Next-generation human genomics

Tim Yu, MD, PhD

Division of Genetics & Genomics, Boston Children's Hospital
Claritas Genomics (\$, stock)
Dept of Neurology, MGH
Harvard Medical School & the Broad Institute

The personalized genome

- Amy, age 21 years, visits with her physician and elects to have complete genome sequencing.
- At a follow-up visit, Amy chooses to learn of her genetic risk factors for heart disease, diabetes, breast cancer, and colon cancer. Amy's physician provides her with risk scores for those disorders, and with suggestions for lifestyle modifications. Specifically, Amy is alerted to her particularly high risk of developing type 2 diabetes, and her physician recommends a rigorous program of diet and exercise that had been shown in a controlled study to delay or prevent disease onset.
- The next year, Amy develops mild asthma and her physician selects an optimal therapy based on Amy's genetic profile.
- Five years later, Amy informs her physician that she and her husband are planning to start a
 family, and they request information regarding the risk of having a child affected by a serious
 genetic disease, based on their genome sequence data. She learns that both she and her
 husband are carriers for the recessive lethal childhood disorder spinal muscular
 atrophy, and they seek further counseling.
- When Amy turns 40, she begins colorectal cancer screening based on her higher-thanaverage risk factors, and at age 45 a precancerous polyp is detected in her colon and is successfully removed.

Sequencing costs

Cost of the first human genome (1990-2003):	\$2.7 Billion
Cost of a human genome in 2009	\$20,000
Cost of a human genome in 2013	\$2,500
Cost of a human "exome" in 2013	\$800 (< brain MRI)

Advances in the last 5 years have made it easy to generate whole genome sequencing data.

The challenge is interpretation.

Next-generation sequencing

Blood samples

DNA Libraries

Flowcells

Sequenc e

Millions of reads are mapped en masse to a reference genome

```
40421551 40421561 40421571 40421581 40421591 40421601 40421611 40421621 40421631 40421641 40421651 40421661 40421671 40421681 40421691 40421701
721tttgagcagacctatataagatggttatgaagattcacacagcggctcatgcctgtgatcccagcactttgggaggctgaggcagtggagcacctgagatcatgagttcaagaccagcctggccaacatggtgaaaccccatctctactaaagatacaaaaattatccaggtgtgtg
 tgaacagacctatataagatggtt tgaagattcacacagtggctcatgcctgtgatcccagcac tggggaggctgagtcaagtggagcacctgagatcatgagtt ACCAGCCTGGCCAACATGGTGAAAACCCCATCTCTACTAAA ATACAAAAATTATCCAA
cagacctatataagatggtt aagatacacacagtggctcatgcctgtgatcccagcactt GGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGAGTTC cagcctggccaacatggtgaaaccccatctctactaaaga ACAAAAAATTATCCAA
GACCTATATAAGATGGTTATGAAGATTCACACAGTGGCTC CCTGTGATCCCAGCACTTTGGGAGGCTGAGGCAAGTGGAG ACCTGAGATCATGAGTTCAAGACCAGCCTGGACAACATGG AACCCCATCTCTACTAAAGATACAAAAATTATCCAA
                                                                                                                                                                                                   ACCAGCC GGCCAACA GG GAAACCCCATC TCTACTAAA ATACAAAAATTA TCCAGG G
                                                                                                                                                                                                                  GCCAACATGGTGAAACCCCCATCTCTACTAAAGATACAAAA
                                                                                                                                                          GAGCACCTGAGATCATGAGTTCAAGACCA
                         ATATAAGATGGTTATGAAGATTCACACAGTGGCTCATGCC tgatcccagcactttgggagg TGAGGCAAGTG
                                                                                                                                                                                ATGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCA CTCTACTAAAGATACAAAAATTA
                                CAGATGG TATGAAGATTCACACAGTGGCTCATGCCTGT ATCCCAGCACTTTG
         tgaacagccclata aagatggttatgaagattcacacagtggctcatgcctgtg TCCCAGCACTTTGGGAGCCTGAGGCAAG
                                                                                                                                                                                 ATGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCA TATACTAAAGATNCAAAAATTATCC
          gaacagacctatata gatggttatgaagattcacacagtagctcatgcctgtgat
                                                                                                                                                                                    GAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCCATC CTACTAAAGATACAAAAA
                                             TETATGAAGACCCCATCACTTTGGGAGGCTGAGGCAAGTGGAGC CCTGAGGTCAAGA AGCCTGGCCAACATCGTGAAACCCCCATATCTACAAAGAT caaaaaa
ACATTTGAACAGACCTATATAA TGGTTATGAAGATTCACACAGTGGCTCATGCCTGTGATCC cactt
                                                                                                                                                                                            CAAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTAC AGAAATACAAAAATTATCCA
                                                                                                                                                             GCA CTGAGATCACGAGTTCAAGACCAGCCTGCCCAACATGGTC AACCCCATCTCTACTAAAGATACAAAAATTACCCA
                   ACCTATATAAGATGGTTATGAAGATTCACACAGTGGCTCA TGTGATCCCAGCACTTTG
             ACAGACCTATATAAGA GGTTACGAAGATTCACACAGTGGCTCATGCCTGTGATCCC cacatt
                                                                                                                                                                                              AAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACT AAGATACAAAAATTATCC/
                                             ttatgaagattcacacagtggctcatgcctgtgatcccag CTTT
                                                                                                                                                                                                          agcctggccaacatggtgaaaccccatctctactaaagat AAAATTATCCA
GCCTGGCCAACATGGTGAAA CCCATCTCTACTAAAGATACAAAAATTATCCA
                                                     \underline{aaga} \underline{tt} \underline{cacacagtggctcatgccagtgat} \underline{cccagcactt} \\ \  \  \underline{GGGAGGCTGAGGCAAGTGGAGCACCTGAGATAATGAGTTC} \\ \  \  \underline{cacacagtggctcatgccagtgat} \underline{cccagcactt} \\ \  \  \underline{GGGAGGCTGAGGCAAGTGGAGCACCTGAGATAATGAGTTC} \\ \  \  \underline{cacacagtggctcatgccagtgat} \underline{cccagcactt} \\ \  \  \underline{cacacagtggctcatgccagtgat} \\ \  \underline{cacacagtgat} \\ \  \underline{ca
                                                                                                                                                                                                            CCTGGCCAACATGGTGAAACCCCCATCTCTACTAAAGATAC
                                                      agattcacacagaggctcatgcctgtgatcccagcactt
                                                              TCACACAG IGGC TCA IGCC IG IGA ICCCAGCACC TIGGG GC IGAGGCAAG IG
                                                                                                                                                                                                                    CCAACATGG GAAACCCCATCTCTACTAAAGATACAAAAA
                                                                      CAG TGGC TCATGCC TG TGAT
                                                                                                                                                                                                                      CAACATGGTGAAACCCCCATCTCTACTAAAGATACAAAAAT
                                                                      CAG GGC CA GCC G GA C
                                                                                                                                                                                                                       AACATGGTGAAACCCCATCTCTACTAAAGATACAGAAATT
                                                                                                                  CCTCTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATG
                                                                      CAG IGGC CA IGCC IG IGA ICC
                                                                                                                                                                                                                         ACATGG GAAACCCCATCTCTACTAAAGATACAAAAATTA
 ACATTI GAACAGACCTA ICTAAGA IGGITA IGAAGATT
                                                                          GCGGC CA GCC G A C
                                                                                                                                                                                                                          ACATGGTGAAACCCCATCTATACTAAAGATACAAAAATTA
                                                                                ACA TI GAACAGACC A ATAAGA GGTTA GAAGATIC
 ACA | | GAACAGACC | A | A | AAGA | GG | | A | GAAGA | | C
 ACATT GAACAGACCTATA AAGATGGTTA GAAGATICA
                                   AGATGGTTATGAAGATTCACACAGTGGCTCATGCCTGTGA CCAGCACTTTGGGAGGCTGAGGCAAGTGGAGTACCTGAGA GAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCATC TACTAAAGATACAAAAATTATCCAGGTGTG
                                   ACA GGITA GAAGATICACACAGTGGC CATGCC G GA
                                                                                                                                                                                                                           CATGGTGTAACCCCATCTCTACTAAAGATACAAAAATTAT
                                            GITATGAAGATICACACAG GGC CA GCC G GA CCC
                                                                                                               CTCTGGGAGGCTGAGGCAAGTG agcacctgagatcatgagttcaagaccagcctg**caacat tgaaaccccatctctactaaagatacaaaaattatccagg
                                                                                                                                                                                                                                    tgaaaccccatct TACTAAAGATACAAAAATTATCCAGG
                                                A GAAGAT ICACACAG IGGC ICA IGCC IG IGA ICCCAGCA IC IGGGAGGC IGAGGCAAG IGGAGCACC IGAGA ICA IGAG
                                                                                                                                                                                                                           CATGGTGAAACCCCATCTCTACTAAAGATACAAAAATTAT
                                                                                                                                                                                                                           CATGGTGAAACCCCATCTCT CTAAAGATACAAAAATTATCCAGGTGTC
                                                                                                                                                                                                                                     GAAACCCCATCTCTACTAAAGATACAAAAATGAT
                                                                                                                                                                                                                                   GTGAAACCCCATCTCTACTAAAGATACAAAAATTATCCAG
                                                                                                                                                                                                                                   GTGAAACCCCATCTCTACTAAAGATACAAAAATTATCCAG
                                                                                                                                                                                                                                   tgaaaccccatctctactaaagatacaaaaattatccag
                                                                                                                                                                                                                                         aaccgtgtctctac aaagatactaaaattatccaggtg
                                                                                                                                                                                                                                     GAAATCCCATCTCTACTAAAGATACAAAAATTATCCAGG
                                                                                                                                                             gcacctgagatcatgagttcaagacca
                                                                                                                                                           AGCACC GAGATCA GAGT CAAGACCAG
                                                                                                                                                                                                                                     GAAACCCCATCTCTACTAAAGATACAAAAATTATCCAGG
                                                                                                                                            GGCAAGTGGAGCACCTGAGATCATGAGTTCAAGACCAGC
                                                                                                                                                                                                                                     GAAACCCCATCTCTACTAAATAAACA
                                                                                                                                                  atttgagctcctgagatcatgagttcaagaccagc
AGTGGAGCACCTGAGATCA
                                                                                                                                                                                                                                     gaaaccccatctctgctgaagatgcaaaaatta
AACCCCATCTCTACTAAAGATACAAAAATTATCCAGGTGT
                                                                                                                                                           AGCACCTGAGATCATGAGTTCAAGACCAGCCTG
                                                                                                                                                                                                                                        AATCCCATCTCTACTAAATATACAAAAATTA CCAGGTG
                                                                                                                                                                                                                                         <u>aaccccatctctactaaagatccaaaaattatcca</u>
                                                                                                                                                                                                                                         AACCCCATCTCTACTAAAGATACAAAAATTATCCA
                                                                                                                                                             GCACCTGAGATCATGAG
                                                                                                                                                       GGAGCACC GAGA CA GAGT CAAGACCAGCC GGC
                                                                                                                                                                                                                                          ACCCCGTTTCTACTAAAGATACAAAAATTATCCAG
                                                                                                                                                                                                                                          accccatctctactaaagatacaaaaa
                                                                                                                                                                                                                                            CCCCATCTCTACTAAAGATAC
                                                                                                                                                          GAGCACCTGAGATCATGAGTTCAAGACCAGCCTGGCCAA
                                                                                                                                                                                                                                                 CATCTCTAATAAAGATACAAAAATTATCCA
                                                                                                                                                                                                                                                CATCTCTACTAAAGATACAAAAATTATCCA
                                                                                                                                                                                                                                                CG C C C ACTAAAGA TACAAAAA TA TCCA
                                                                                                                                                                                                                                                CATCTCTACTAAAGATACAAAAATTATCCA
```

Reads can effectively cover 95% of the genome or exome

Coverage of chr7 in a typical whole exome sequencing experiment

Genes

Read depth

Variants are detected when enough reads disagree with reference

```
40421551 40421561 40421571 40421581 40421591 40421601 40421611 40421621 40421631 40421641 40421651 40421661 40421671 40421681
721tttgagcagacctatataagatggttatgaagattcacacagcggctcatgcctgtgatcccagcactttgggaggctgaggcaagtggagcacctgagatcatgagttcaagaccagcctggccaacatggtgaaaccccatctctactaaagatacaaaaattatccaggtgtgtg
tgaacagacctatataagatggtt tgaagattcacacagtggctcatgcctgtgatcccagcac tgggaggctgagtcaagtggagcacctgagatcatgagtt ACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAA ATACAAAAATTATCCA
cagacctatataagatggtt aagatacacacagtggctcatgcctgtgatcccagcactt GGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATGAGTTC cagcctggccaacatggtgaaaccccatctctactaaaaga ACAAAAATTATCCA
GACCTATATAAGATGGTTATGAAGATTCACACAGTGGCTC CCTGTGATCCCAGCACTTTGGGAGGCTGAGGCAAGTGGAG ACCTGAGATCATGAGTTCAAGACCAGCCTGGACAACATGG AACCCCATCTCTACTAAAGATACAAAAATTATCCA
                                                                                                                           ACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAA ATACAAAAATTATCCAGGTG
                ATATAAGATGGTTATGAAGATTCACACAGTGGCTCATGCC tgatcccagcactttgggagg TGAGGCAAGT
                                                                                                                                    GCCAACA GG GAAACCCCA C ICTACTAAAGA TACAAAA
                                                                                                 AGCACC TGAGAT CATGAGT TCAAGACCA
                                                                                                                      TCAAGACCAGCCTGGCCAACATGGTGAAACCCCA CTCTACTAAAGATACAAAAATTA
                    CAGATGG TATGAAGAT CACACAGTGGCTCATGCCTGT ATCCCAGCACTT
      gaacagccclata aagatggttatgaagattcacacagtggctcatgcctgtg TCCCAGCACTTTGGGAGCCTGAGGCAAG
                                                                                                                      TCAAGACCAGCCTGGCCAACATGGTGAAACCCCA TATACTAAAGATNCAAAAAT
      gaacagacctatata gatggttatgaagattcacacagtagctcatgcctgtgat
                             ACATTIGAACAGACCTATATAA TGGTTATGAAGATTCACACAGTGGCTCATGCCTGTGATCC
                                                                                                                       CAAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTAC AGAAATACAAAAATTATCC/
            ACCTATATAAGATGGTTATGAAGATTCACACAGTGGCTCA TGTGATCCCAGCACT
                                                                                                   GCA CTGAGATCACGAGTTCAAGACCAGCCTGCCCAACATGGTC AACCCCATCTCTACTAAAGATACAAAAATTACCCA
                                                                                                                        AAGACCAGCCTGGCCAACATGGTGAAACCCCCATCTCTACT AAGATACAAAAATTATCC
        ACAGACCTATATAAGA GGTTACGAAGATTCACACAGTGGCTCATGCCTGTGATCCC cacat
                            ttatgaagattcacacagtggctcatgcctgtgatcccag CTT
                                                                                                                               gcctggccaacatggtgaaaccccatctctactaaagat AAAATTATCCA
GCCTGGCCAACATGGTGAAA CCCATCTCTACTAAAGATACAAAAATTATCCA
                                                                                                                                CCTGGCCAACATGGTGAAACCCCCATCTCTACTAAAGATAC
                                       TCACACAG IGGC TCA IGCC IG IGA ICCCAGCACC I IGGG GC IGAGGCAAG I
                                                                                                                                      CCAACATGGTGAAACCCCATCTCTACTAAAGATACAAAAA
                                                                                                                                       CAACATGGTGAAACCCCCATCTCTACTAAAGATACAAAAAT
                                            CAG GGC CA GCC G GA C
                                                                                                                                       AACA TGG TGAAACCCCA TC TC TACTAAAGA TACAGAAAT
                                                                        CCTCTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATG
                                            CAGTGGC CATGCC G GATCC
                                                                                                                                         ACATGGTGAAACCCCATCTCTACTAAAGATACAAAAATTA
ACATTI GAACAGACCTA ICTAAGA IGGITA IGAAGATT
                                              GCGGC CA GCC G A C
                                                                                                                                         ACATGG GAAACCCCATC TATAC TAAAGA TACAAAAATTA
                                                  CTCTTGCCTGTGATCCCAGCACTTTGGGAGGCTGACGCAA TGGAGCACCTGAGATCATGAGTTCAAGACCAGCCTGGCCACCTCATGCCTGTGATCCCAGCACTTTGGGAGGCTGAGGCAA TGGAGCACCTGAGATCATGAGTTCAAGACCAGCCTGGCCA
ACATTTGAACAGACCTATATAAGATGGTTATGAAGATTC
                                                                                                                                               GAAACCCCA TC TC TAC TAAAGA TACAAAAA TTA TCC
ACA | GAACAGACC A A AAGA GG | A GAAGA | C
                                                                                                                                               TGAAACCCCATCGCTACTAAAGATACAAAAATTATCCA
ACATTI GAACAGACCTATA TAAGA TGGTTA TGAAGAT CA
                                                            GTGATCCCAGCACTTTGGGAGGCAAGTGGAGCAC GATCATGAGTTCAAGACCCGCCTGGCCAACATGGTGAAAC ccatctctactaaagatacaaaaattatccaggtgtg
                      AGA TGG I TA TGAAGA T CACACAG TGGC TCA TGCC TG TGA CCAGCAC T T GGGAGGC TGAGGCAAG TGGAG TACC TGAGA
                                                                                                                 GAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCCATC TACTAAAGATACAAAAATTATCCAGGTGTC
                      ACATGGTTATGAAGATTCACACAGTGGCTCATGCCTGTGA
                                                                                                                                          CATGGTGTAACCCCATCTCTACTAAAGATACAAAAATTAT
                                                                         CTCTGGGAGGCTGAGGCAAGTG agcacctgagatcatgagttcaagaccagcctg**caacat tgaaaccccatctctactaaaagatacaaaaattatccagg
                                                                                                                                                tgaaaccccatct TACTAAAGATACAAAAATTATCCAGG
                               ATGAAGATTCACACAGTGGCTCATGCCTGTGATCCCAGCA TCTGGGAGGCTGAGGCAAGTGG
                                                                                                                                          CATGGTGAAACCCCATCTCTACTAAAGATACAAAAATTAT
                                                                                                                                          CATGG GAAACCCCATCTCT CTAAAGATACAAAAATTATCCAGG GTC
                                                                                                                                                GAAACCCCA TC TC TACTAAAGA TACAAAAA TGAT
                                                                                                                                                  AACCCCATCTCTACTAAAGATACAAAAATTATCCAG
                                                                                                                                               TGAAACCCCATCTCTACTAAAGATACAAAAATTATCCAG
                                                                                                                                                tgaaaccccatctctactaaagatacaaaaattatccag
                                                                                                                                                   aaccgtgtctctac aaagatactaaaattatccaggt
                                                                                                                                                GAAATCCCATCTCTACTAAAGATACAAAAATTATCCAGG
                                                                                                 AGCACCTGAGATCATGAGTTCAAGACCAG
                                                                                                                                                GAAACCCCATCTCTACTAAAGATACAAAAATTATCCAGG
                                                                                        GGCAAG GGAGCACC GAGA CA TGAGT CAAGACCAGC
                                                                                                                                                GAAACCCCATCTCTACTAAATAAACA
                                                                                                tgageteetgagateatgagtteaagaceage
GGAGCACCTGAGATCA
                                                                                                                                                gaaaccccatctctgctgaagatgcaaaaatta
AACCCCATCTCTACTAAAGATACAAAAATTATCCAGGTG
                                                                                                  AGCACCTGAGATCATGAGTTCAAGACCAGCCTG
                                                                                                                                                  AATCCCATCTCTACTAAATATACAAAAATTATCCAGGTG
                                                                                                                                                  aaccccatctctactaaagatccaaaaattatcca
                                                                                                                                                  AACCCCATCTCTACTAAAGATACAAAAATTATCCA
                                                                                                 SAGCACC GAGAT CATGAGT T CAAGACCAGCC TGGC
                                                                                                                                                   ACCCCGTTTCTACTAAAGATACAAAAATTATCCA
                                                                                                                                                   accccatctctactaaagatacaaaaa
                                                                                                                                                    CCCCATCTCTACTAAAGATAC
                                                                                                                                                        CATCTCTAATAAAGATACAAAAATTATCC
                                                                                                                                                       CATCTCTACTAAAGATACAAAAATTATCCA
                                                                                                                                                        CGTCTCTACTAAAGATACAAAAATTATCCA
                                                                                                                                                        CATCTCTACTAAAGATACAAAAATTATCCA
```

Variants are detected when enough reads disagree with reference

```
40421571 40421581 40421591 40421601
                                                                      10421611 40421621 40421631 40421641 40421651 40421661 40421671 40421681 40421691 40421701 40421711
721tttgagcagacctatataagatg
                            ttatgaagattcacacagcggctcatgcctgtgatccca
                                                                      actttgggaggctgaggcaagtggagcacctgagatcatgagttcaagaccagcctggccaacatggtgaaaccccatctctactaaagatacaaaaattatccaggtgtggtg
 ............T.....T......
                                                                      ....
                                                                            ggaggc\gag\caag\ggagcacc\gaga\ca\gag\t
666A66CT6A66CAAGT6GA6CACCT6A6ATCAT6AGTTC
                                                                                                                        ACCAGCC GGCCAACATGG GAAACCCCATCTCTACTAAA ATACAAAAATTA CCAGG G I
      gaacagacctatataagatg
                               tgaagattcacacagtggctcatgcctgtgatccca
                             t aagatacacacagtggctcatgcctgtgatcccag
                                                                                                                          {\tt cagcctggccaacatggtgaaaccccatctctactaaaga} \ \ {\tt ACAAAAATTATCCAGG}
         cagacctatataagat
                                                                                             GGAG ACCIGAGATCATGAGTICAAGACCAGCCTGGACAACATGG
           GACC A TATAAGA C
                                                                      CACTTTGGGAGGCTGAGGCAAGT
                                                                                                                                             AACCCCATCTCTACTAAAGATACAAAAATTATCCAG
                             TATGAAGAT CACACAG GGC CATGCC tgatccca
                                                                                               AGCACC GAGATCA TGAGT CAAGACCA
                                                                                                                                 GCCAACATGGTGAAACCCCATCTCTACTAAAGATACAAAA
                              ATGAAGATTCACACAGTGGCTCATGCCTGT ATCCCA
                                                                                                AGCACCTG
                                                                                                                   TTCAAGACCAGCCTGGCCAACATGGTGAAACCCCA CTCTACTAAAGATACAAAAAT
                                                                                                             ATGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCA TATACTAAAGATNCAAAAAT
                              tatgaagattcacacagtggctcatgcctgtg TCCCA
                             tatgaagattcacacagtagctcatgcctgtgat
                                      ttcacacagtggctc CTGTAATCCCA
                                                                      ACTITIGGGAGGCTGAGGCAAGTGGAGC CCTGAGATCATGAGTTCAAGA AGCCTGGCCAACATCGTGAAACCCCATATCTACTAAAGAT caaa
                                                                                                                    CAAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTAC AGAAATACAAAAATTATCCA
                             TATGAAGATTCACACAGTGGCTCATGCCTGTGATCC
                                                                                                AGCA CTGAGATCACGAGTTCAAGACCAGCCTGCCCAACATGGTC AACCCCATCTCTACTAAAGATACAAAAATTACCCA
                                                                                                                     AAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACT AAGATACAAAAAT
                                                                                                                            gcctggccaacatggtgaaaccccatctctactaaagat AAAATTATCCAGGCCTGGCCAACATGGTGAAA CCCATCTCTACTAAAGATACAAAAATTATCCAG
                                                                              GAGGCTGAGGCAAGTGGAGCACCTGAGATAATGAGTTC
                                                                               AGGC GAGGCAAG GGAGCACC GAGATCATGAG CAAG
                                  agattcacacagaggctcatgcctgtgatccca
                                                                                                                             CCTGGCCAACATGGTGAAACCCCATCTCTACTAAAGATAC
                                                                                                                                   CCAACATGGTGAAACCCCCATCTCTACTAAAGATACAAAAA
                                                                                                                                   CAACATGGTGAAACCCCATCTCTACTAAAGATACAAAAAT
                                                                                                                                    AACA TGGTGAAACCCCATCTCTACTAAAGA TACAGAAAT
                                                                      CCTCTGGGAGGCTGAGGCAAGTGGAGCACCTGAGATCATG
                                                                                                                                     ACATGGTGAAACCCCATCTCTACTAAAGATACAAAAATTA
                                           CAGTGGCTCATGCCTGTGATCC
                                             GCGGC CA GCC G A C
                                                                       CTT GGGAGGC GAGGCAAG GGAGCACC GAGATCATGA
                                                                                                                                      ACATGGTGAAACCCCATCTATACTAAAGATACAAAAATTA
    GAACAGACC A CTAAGA
                                                 CTCTTGCCTGTGATCCCAGCACTTTGGGAGGCTGACGCAA TGGAGCACCTGAGATCATGAGTTCAAGACCAGCCTGGCCA
CTCATGCCTGTGATCCCAGCACTTTGGGAGGCTGAGGCAA TGGAGCACCTGAGATCATGAGTTCAAGACCAGCCTGGCCA
    TGAACAGACCTATATAAGAT
                                                                                                                                          GGTGAAACCCCATCTCTACTAAAGATACAAAAATTATCC
 CATTIGAACAGACCTATATAAGATO
                           G TATGAAGATIC
                                                                                                                                          GGTGAAACCCCATCGCTACTAAAGATACAAAAATTATCCA
ACATTI GAACAGACCTA TATAAGATGGTTA TGAAGATTCA
                                                           GTGATCCCAGCACTTTGGGAGGCTGAGGCAAGTGGAGCAC GATCATGAGTTCAAGACCCGCCTGGCCAACATGGTGAAAC ccatctctactaaagatacaaaaat
                     AGATGGTTATGAAGATTCACACAGTGGCTCATGCCTGTGA CCAGCACTTTGGGAGGCTGAGGCAAGTGGAGTACCTGAGA GAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCATC TACTAAAGATACAAAAAATTATCCAGGTGTGTG
                     ACA GG LA GAAGA CACACAG GGC CA GCC G GA
                                                                                                                                       CATGGTGTAACCCCCATCTCTACTAAAGATACAAAAATTAT
                                                                       CTCTGGGAGGCTGAGGCAAGTG agcacctgagatcatgagttcaagaccagcctg**caacat tgaaaccccatctctactaaagatacaaaaattatccagg
                             TATGAAGATTCACACAGTGGCTCA
                                                                                                                                            tgaaaccccatct TACTAAAGATACAAAAATTATCCAGGTGTGG
                                                                                                                                       CATGGTGAAACCCCATCTCTACTAAAGATACAAAAATTAT
                              A GAAGA CACACAG GGC CA GCC G GA CCCAGCA C GG
                                                                                                                                       CATGGTGAAACCCCATCTCT CTAAAGATACAAAAATTATCCAGGTGTGG
                                                                                                                                             GAAACCCCATCTCTACTAAAGATACAAAAATGAT
                                                                                                                                           G GAAACCCCA C IC TAC TAAAGA TACAAAAA TA TCCAG
                                                                                                GCACCTGAGATCATGAG
                                                                                                                                           GTGAAACCCCATCTCTACTAAAGATACAAAAATTATCCAG
                                                                                                                                            tgaaaccccatctctactaaagatacaaaaattatccag
                                                                                                                                                 accgtgtctctac aaagatactaaaattatccaggtg
                                                                                                                                             GAAATCCCATCTCTACTAAAGATACAAAAATTATCCAGG
                                                                                                AGCACCTGAGATCATGAGTTCAAGACCAG
                                                                                                                                             GAAACCCCATCTCTACTAAAGATACAAAAATTATCCAGG
                                                                                      GGCAAGTGGAGCACCTGAGATCATGAGTTCAAGACCAGC
                                                                                                                                             GAAACCCCATCTCTACTAAATAAACA
                                                                                              gageteetgagateatgagtteaagaceage
GAGCACCTGAGATCA
                                                                                                                                               aaccccatctctgctgaagatgcaaaaatta
AACCCCATCTCTACTAAAGATACAAAAATTATCCAGGTGT
                                                                                                AGCACC GAGA CATGAGT CAAGACCAGCC G
                                                                                                                                               AATCCCATCTCTACTAAATATACAAAAATTATCCAGGTG
                                                                                                                                               aaccccatctctactaaagatccaaaaattatcca
                                                                                                                                               AACCCCA TC TC TACTAAAGA TACAAAAATTA TCCAC
                                                                                              GGAGCACC TGAGAT CATGAGT TCAAGACCAGCC TGGC
                                                                                                                                                ACCCCGTTTCTACTAAAGATACAAAAATTATCCAGGTGTG
                                                                                                                                                accccatctctactaaagatacaaaaat
                                                                                                                                                 CCCCATCTCTACTAAAGATAC
                                                                                                                                                    CATCTCTAATAAAGATACAAAAATTATCCA
                                                                                                                                                    CATCTCTACTAAAGATACAAAAATTATCCAGGTGTGCT
                                                                                                                                                    CG I C I C I ACTA A A GATA CAA A A A TA T C C A G
                                                                                                                                                    CATCTCTACTAAAGATACAAAAATTATCCAC
```

Variants are detected when enough reads disagree with reference

40421571 40421581 40421591 40421601 ttatgaagattcacacagggctcatgcctgtgatccca tgaagattcacatagtgo/tcatgcctgtgatccca aagatacacacagtggc catgcctgtgatccca ATGAAGATTCACACAGTGGCTC CCTGTGATCCC TATGAAGATTCACACAGTGGCTCATGCC tgatccca TATGAAGATTCACACAGTGGCTCATGCCTG ATCCC tatgaagattcacacagtggctcatgcctgtg tatgaagattcacacagtagctcatgcctgtgat tatgaagattcacacagtggctc TATGAAGATTCACACAGTGGCTCATGCCTGTGATCC TATGAAGATTCACACAGTGGCTCA TACGAAGATTCACACAGTGGCTCATGCCTGTGATCCC tatgaagattcacacagtggctcatgcctgtgatccca aagattcacacagtggctcatgccagtgatccca agattcacacagaggctcatgcctgtgatccca TTCACACAGTGGCTCATGCCTGTGATCCC

PositionReference sequenceInferred patient sequence

Raw sequence reads from patient

C > T variant

The human genome is big

3 billion basepairs

X 0.1%

3 million sites of variation between any two individuals

A parts list of variants from one individual

Table 2. SNPs Identified through Whole-Genome Sequencing of DNA from the Proband.*	
SNP Type	No. of SNPs
Nongene	2,255,102
Gene	1,165,204
Intron	1,064,655
Promoter	60,075
3' UTR	16,350
5′ UTR	3,517
Splice regulatory site	2,089
Splice site	112
Synonymous	9,337
Stop→stop	17
Nonsynonymous	9,069
Stop→gain	121
Stop→loss	27
Total	3,420,306

Lupski et al, NEJM 2010

Of these 3 million, which are medically relevant?

traits

(hundreds to thousands?)

risk factors (dozens?)

disease-associated (handful?)

How do you interpret 3,000,000 variants?

3,000,000

Commonly encountered?

5-10% of variants have not been seen frequently in controls

In a gene coding region?

0.25% of rare variants lie within a gene coding region

Alter protein (or affect splicing)?

~50% of variants in geness alter protein or affect splicing

Affect a known disease gene?

~10% of genes have been associated with human disease

WGS has revolutionized Mendelian genetics

Single disease genes!

Three siblings w/intellectual disability, cataracts and seizures

Challenges to clinical adoption

- A "data deluge"
- Many results are of uncertain medical significance
- Insufficient numbers of geneticists and genetic counselors to handle the flood of clinical data
- Clinicians and patients will need education and training
- Collaborative efforts will be required to amass and organize data
- Birth of a new specialty?

Challenges to clinical adoption

- Genomic medicine requires cross-disciplinary skills
 - Genetics
 - Genomics
 - Lab Medicine
 - Informatics
- Example:
 - Processing time for 1 human genome: one week
 - Requires highly specialized computer systems and expertise that stresses most hospital infrastructures

Challenges to clinical adoption

- 3 billion bases & 3 million variants don't fit in a patient chart
- 1 patient's whole genome data = 1 terabyte hard drive
- Costs of secure storage!
- Electronic Medical Records are not yet equipped to handle this

40 patient whole genomes, on a shelf

Ethical, legal, & social issues

- Privacy and confidentiality
- Stigmatization, and discrimination
- Results of uncertain medical significance, emotional distress, follow-up tests, and cost
- Genetic paternalism vs. right to control your genomic information

Standards of evidence

- Need to be careful applying what we think we know
- Many currently reported disease associations are based on old studies of with small sample sizes, or using outdated technologies
- These will need to be re-evaluated as we get better at interpreting genetic results
- We also need to be cost-effective, and demonstrate that this leads to better care

The importance of functional follow-up

- ✓ Family with three children with autism, intellectual disability, and seizures
- ✓ WES performed in 3 children + parents
- ✓ Homozygous I308F mutation in AMT, a cause of glycine encephalopathy
- ✓ Rare (never before seen in controls)
- ✓ Alters a highly conserved residue, "looks deleterious"
- ✓ But patients with glycine encephalopathy often die in the neonatal period

AMT p.I308F is a hypomorphic LOF mutation

 I308F: defects in protein folding and enzyme function, but retains some residual activity

- ✓ These children had a mild version of glycine encephalopathy with autism and epilepsy
- ✓ Had been previously undiagnosed in the family (requires lumbar puncture, liver biopsy)

Grappling with "incidental findings"

The Incidentalome

A Threat to Genomic Medicine

Isaac S. Kohane, MD, PhD

Daniel R. Masys, MD

Russ B. Altman, MD, PhD

ENOMIC MEDICINE IS POISED TO OFFER A BROAD Array of new genome-scale screening tests. However, these tests may lead to a phenomenon in which multiple abnormal genomic findings are discovered, analogous to the "incidentalomas" that are often discovered in radiological studies. If practitioners pursue these unexpected genomic findings without thought, there may be disastrous consequences. First, physicians will

There is a rich literature in radiology on the "incidentaloma," which is a finding (most commonly a mass) found on computed tomography or magnetic resonance imaging studies ordered for symptoms or concerns totally unrelated to the gland in which the mass is found. The workup of an incidentaloma is complicated by concerns that it may be associated with malignant disease and, at least initially, the lack of good data on the prevalence of malignant disease in the general population. Incidentalomas occur because imaging modes do not only report on the areas of direct clinical concern but, incidentally, report on all organs in the field of view.¹

This phenomenon of possible incidental genomic find-

Other open issues in genomic medicine

Primary vs. Secondary Findings

Genes of Uncertain Significance

Research vs. Clinical boundaries

Stretching our definitions of disease

Collaborative resources and standards

Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture

Timothy W Yu¹⁻⁷, Ganeshwaran H Mochida¹⁻⁷, David J Tischfield¹⁻⁵, Sema K Sgaier^{1-5,8}, Laura Flores-Sarnat⁹, Consolato M Sergi^{10,11}, Meral Topçu¹², Marie T McDonald¹³, Brenda J Barry¹⁻⁵, Jillian M Felie¹⁻⁵, Christine Sunu¹⁻⁵, William B Dobyns¹⁴, Rebecca D Folkerth¹⁵, A James Barkovich¹⁶ & Christopher A Walsh¹⁻⁶

One of the first demonstrations of using NGS in humans Identification of a new gene for human microcephaly from 6 families

[Yu et al, Nat Genetics, 2010]

Genetic Defect in CYP24A1, the Vitamin D 24-Hydroxylase Gene, in a Patient with Severe Infantile Hypercalcemia

Andrew Dauber, Thutrang T. Nguyen, Etienne Sochett, David E. C. Cole, Ronald Horst, Steven A. Abrams, Thomas O. Carpenter, and Joel N. Hirschhorn

Novel Microcephalic Primordial Dwarfism Disorder Associated with Variants in the Centrosomal Protein Ninein

Andrew Dauber, Stephen H. LaFranchi, Zoltan Maliga, Julian C. Lui, Jennifer E. Moon, Cailin McDeed, Katrin Henke, Jonathan Zonana, Garrett A. Kingman, Tune H. Pers, Jeffrey Baron, Ron G. Rosenfeld, Joel N. Hirschhorn, Matthew P. Harris, and Vivian Hwa

Whole exome sequencing of children with endocrine disorders: new genes for pediatric hypercalcemia and dwarfism

[Dauber et al, JCEM 2012]

REPORT

Exome Sequencing and Functional Validation in Zebrafish Identify *GTDC2* Mutations as a Cause of Walker-Warburg Syndrome

M. Chiara Manzini,^{1,2} Dimira E. Tambunan,^{1,2} R. Sean Hill,^{1,2} Tim W. Yu,^{1,2} Thomas M. Maynard,³ Erin L. Heinzen,⁴ Kevin V. Shianna,⁴ Christine R. Stevens,⁵ Jennifer N. Partlow,^{1,2} Brenda J. Barry,^{1,2} Jacqueline Rodriguez,^{1,2} Vandana A. Gupta,^{1,6} Abdel-Karim Al-Qudah,⁷ Wafaa M. Eyaid,⁸ Jan M. Friedman,^{9,10} Mustafa A. Salih,¹¹ Robin Clark,¹² Isabella Moroni,¹³ Marina Mora,¹⁴ Alan H. Beggs,^{1,6} Stacey B. Gabriel,⁵ and Christopher A. Walsh^{1,2,5,*}

Larger cohorts:

WES in 19 families identifies a novel gene responsible for a well-known neuromuscular disorder

[Manzini et al, AJHG, 2012]

Using Whole-Exome Sequencing to Identify Inherited Causes of Autism

Timothy W. Yu,^{1,2,3,4,5,6,7,32,*} Maria H. Chahrour,^{1,2,3,4,5,7,32} Michael E. Coulter,^{1,2,3,5} Sarn Jiralerspong,⁸ Kazuko Okamura-Ikeda,⁹ Bulent Ataman,¹⁰ Klaus Schmitz-Abe,^{1,2,5} David A. Harmin,¹⁰ Mazhar Adli,¹¹ Athar N. Malik,¹⁰ Alissa M. D'Gama,⁵ Elaine T. Lim,¹² Stephan J. Sanders,¹³ Ganesh H. Mochida,^{1,2,3,5,6} Jennifer N. Partlow,^{1,2,3} Christine M. Sunu,^{1,2,3} Jillian M. Felie,^{1,2,3} Jacqueline Rodriguez,^{1,2,3} Ramzi H. Nasir,^{5,14} Janice Ware,^{5,14} Robert M. Joseph,^{4,15} R. Sean Hill,^{1,2,3,5} Benjamin Y. Kwan,¹⁶ Muna Al-Saffar,^{1,2,17} Nahit M. Mukaddes,¹⁸ Asif Hashmi,¹⁹ Soher Balkhy,²⁰ Generoso G. Gascon,^{6,18,21} Fuki M. Hisama,²² Elaine LeClair,^{5,14} Annapurna Poduri,^{5,23} Ozgur Oner,²⁴ Samira Al-Saad,²⁵ Sadika A. Al-Awadi,²⁶ Laila Bastaki,²⁶ Tawfeg Ben-Omran,^{27,28} Ahmad S. Teebi,^{27,28} Lihadh Al-Gazali,¹⁷ Valsamma Eapen,²⁹ Christine R. Stevens,⁷ Leonard Rappaport,^{4,5,14} Stacey B. Gabriel,⁷ Kyriacos Markianos,^{1,2,5} Matthew W. State,¹³ Michael E. Greenberg,¹⁰ Hisaaki Taniguchi,⁹ Nancy E. Braverman,⁸ Eric M. Morrow,^{4,30,31} and Christopher A. Walsh^{1,2,3,4,5,7,*}

Larger cohorts: WES in >150 consanguineous families to find new recessive autism genes

[Yu et al, Neuron 2013]

BabySeq:

WES and WGS on 120 normal newborns and 120 NICU patients -> Clinical outcomes, healthcare utilization, and safety

What is Claritas Genomics?

A Diagnostic Testing Company

Arose out of Boston Children's Hospital

- CLIA licensed molecular lab for genomic medicine
- Specialty testing based on Boston Children's research and clinical knowledge

Partnership with major pediatric hospitals in the US

Partnering with industry (Life Technologies, Cerner)

Partnering with country health systems (Saudi Genome Project, US Million Veterans Project)

Starting an Interpretive Genomics Service at Boston Children's Hospital

Questions!

