"The Future of Pediatric Diagnostics is Now"

Patrice M. Milos, Ph.D. President and CEO, Claritas Genomics August 21st, 2013

CLARITAS GENOMICS

BioConference Live Presentation

- Why is Pediatric Genetics So Important Today?
- The Exponential Increase In Technologies
- Our Growing Knowledge of Human Disease Genetics
- The Evolving Use of Genetic Testing
- Translating Our Knowledge for Pediatric Healthcare
- The Key Differentiators of Claritas Genomics

Our Knowledge of Disease Genetics Is Rapidly Expanding

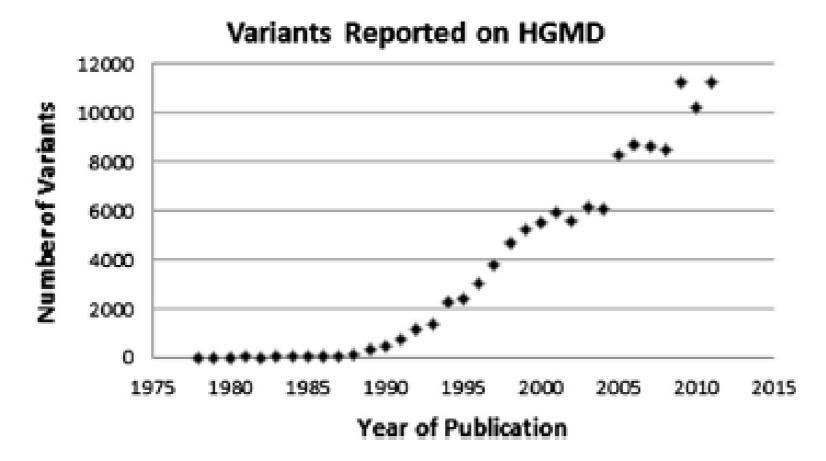


Figure 1. Total human disease variants reported on Human Gene Mutation Database (HGMD) according to the year of publication.

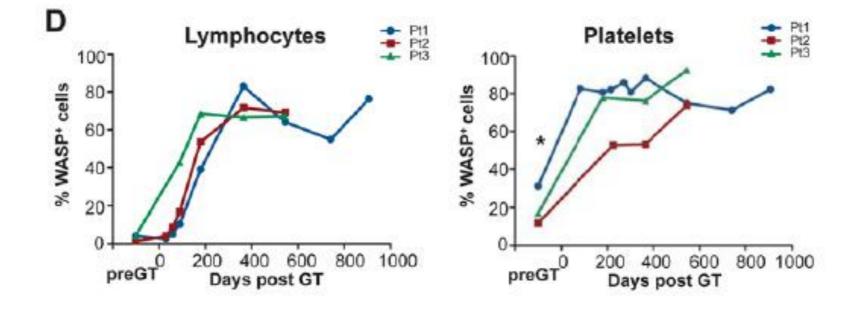
Canadian Journal of Cardiology (2013) 29:934-939

Research Articles

Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome

Alessandro Aiuti,^{1,2,3,4}* Luca Biasco,^{1†} Samantha Scaramuzza,^{1†} Francesca Ferrua,^{2,3,5} Maria Pia Cicalese,^{2,3} Cristina Baricordi,¹ Francesca Dionisio,¹ Andrea Calabria,¹ Stefania Giannelli,¹ Maria Carmina Castiello,^{1,5} Marita Bosticardo,¹ Costanza Evangelio,^{2,3} Andrea Assanelli,^{3,6} Miriam Casiraghi,² Sara Di Nunzio,² Luciano Callegaro,² Claudia Benati,⁷ Paolo Rizzardi,⁷ Danilo Pellin,⁸ Clelia Di Serio,⁸ Manfred Schmidt,⁹ Christof Von Kalle,⁹ Jason Gardner,¹⁰ Nalini Mehta,¹¹ Victor Neduva,¹¹ David J. Dow,¹¹ Anne Galy,¹² Roberto Miniero,¹³ Andrea Finocchi,⁴ Ayse Metin,¹⁴ Pinaki Banerjee,¹⁵ Jordan Orange,¹⁵ Stefania Galimberti,¹⁶ Maria Grazia Valsecchi,¹⁶ Alessandra Biffi,^{1,2,3} Eugenio Montini,¹ Anna Villa,^{1,17} Fabio Ciceri,^{3,6} Maria Grazia Roncarolo,^{1,2,3,5‡} Luigi Naldini^{1,5‡}

Wiskott-Aldrich syndrome (WAS) - Inherited immunodeficiency caused by mutations in the gene encoding WASP, a protein regulating the cytoskeleton


Science. 2013 Jul 11. [Epub ahead of print]

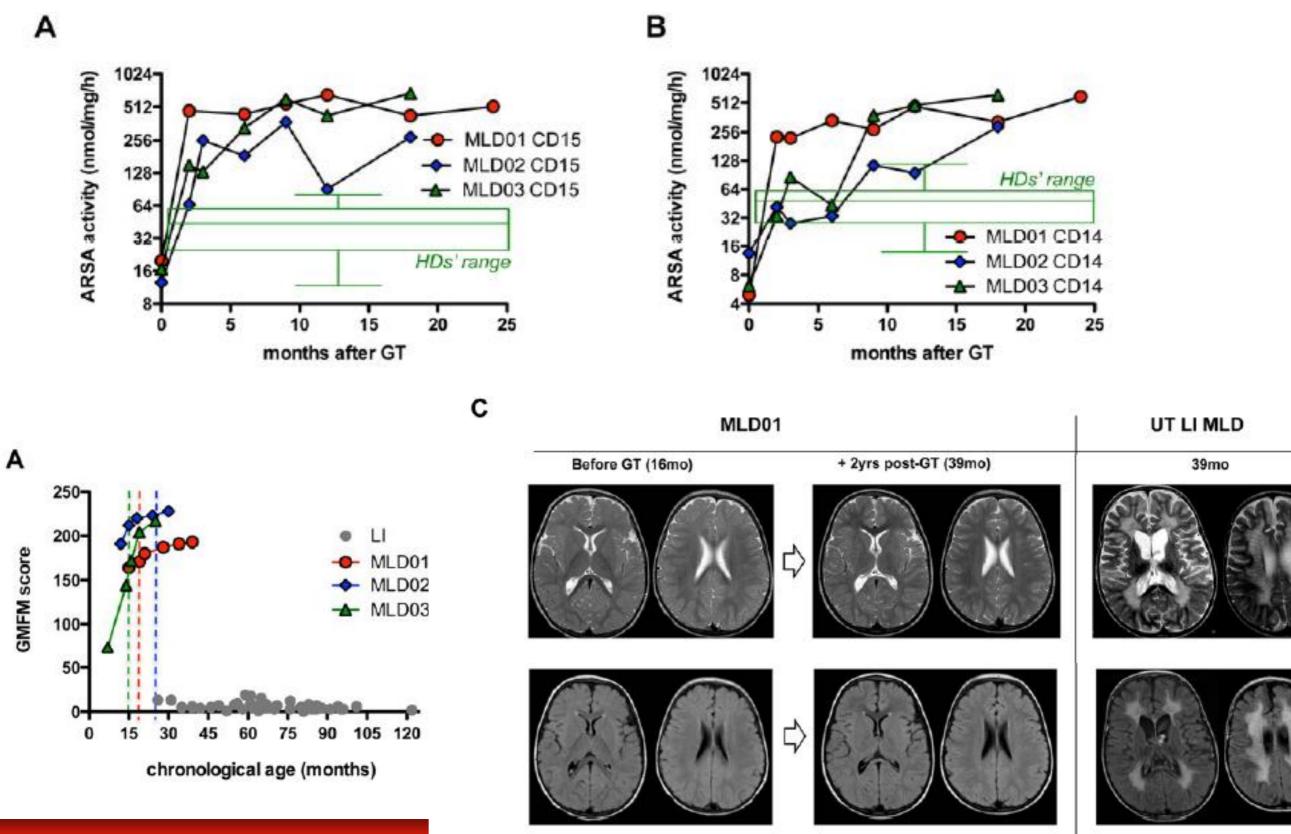
Correction of Genetic Deficiency for >20 Months

	Patient 1	Patient 2	Patient 3
	· · · · · · · · · · · · · · · · · · ·		
WAS mutation	Exon 10: C>T 995 (R321X)	IVS10de111nt	37C>T (R13X)
WASP expression	<5%	<5%	<5%

Following stem cell transduction with WT WAS

Vector copies/genome	1.9 (BM)-1.4 (MPB)	2.4	2.8
Transduction efficiency (CFC)	92% (BM)-88% (MPB)	97%	100%
Follow-up (mo)	32	23	20

Gene Therapy for Metachromatic Leukodystrophy


Research Articles

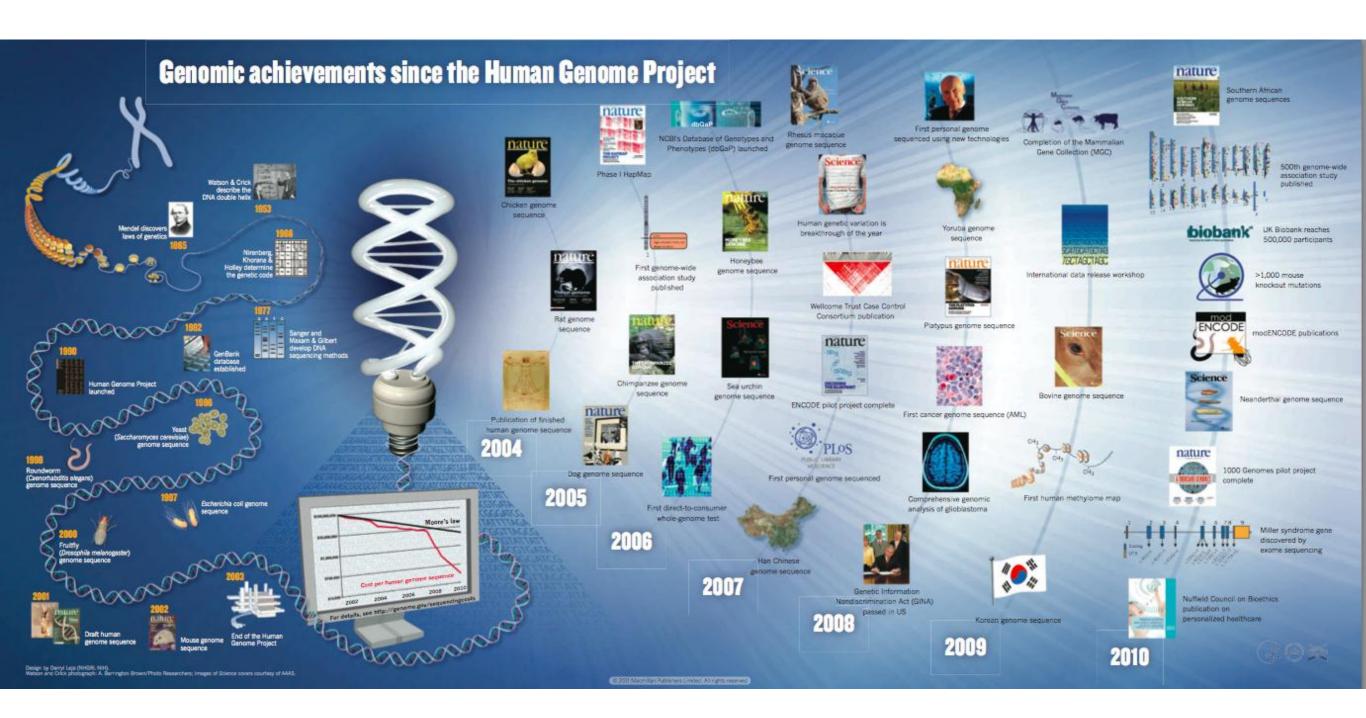
Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy

Alessandra Biffi,^{1,2,3}*§ Eugenio Montini,¹* Laura Lorioli,^{1,2,3,4} Martina Cesani,¹ Francesca Fumagalli,^{2,4,5} Tiziana Plati, Cristina Baldoli, Sabata Martino,⁸ Andrea Calabria,¹ Sabrina Canale,² Fabrizio Benedicenti,¹ Giuliana Vallanti,⁸ Luca Biasco,¹ Simone Leo,⁹ Nabil Kabbara,¹⁰ Gianluigi Zanetti,⁹ William B. Rizzo,¹¹ Nalini A. L. Mehta,¹² Maria Pia Cicalese,^{2,3} Miriam Casiraghi,² Jaap J. Boelens,¹³ Ubaldo Del Carro,⁵ David J. Dow,¹² Manfred Schmidt,¹⁴ Andrea Assanelli,^{3,15} Victor Neduva,¹² Clelia Di Serio,⁴ Elia Stupka,¹⁶ Jason Gardner,¹⁷ Christof von Kalle,¹⁴ Claudio Bordignon,^{4,8} Fabio Ciceri,^{3,15} Attilio Rovelli,¹⁸ Maria Grazia Roncarolo,^{1,2,3,4} Alessandro Aiuti,^{1,2,3,19} Maria Sessa,^{2,5} Luigi

Metachromatic leukodystrophy (MLD) - Inherited lysosomal storage disease caused by arylsulfatase A (ARSA) deficiency

Genetic Correction of Leukodystrophy

FLAIR


Our Ability to Translation Genomics Knowledge

PERSPECTIVE

Charting a course for genomic medicine from base pairs to bedside

doi:10.1038/nature09764

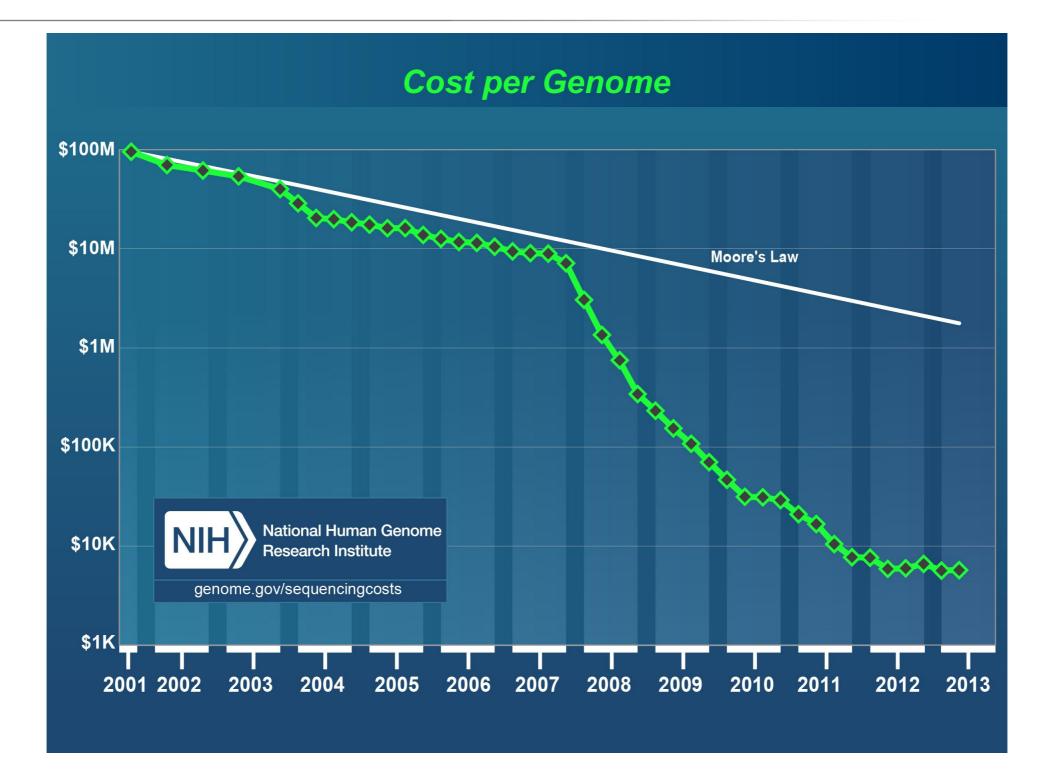
Eric D. Green1, Mark S. Guyer1 & National Human Genome Research Institute

Extensive Sequencing to Diagnose Rare Disorders

Sir Archibald Garrod, around 1910. Inborn Errors of Metabolism

Second Edition

Archibald E. Garrod


Henry Frowde and Hodder & Stoughton The Lancet Building London

1923

1902 – disorder in the metabolism of phenylalanine and tyrosine

- Disorder of joints and heart valves with curious darkening of urine
 - Treatment with dietary restriction

Technology Advancements Have Been Staggering

Sci Transl Med 12 January 2011: Vol. 3, Issue 65, p. 65ra4 DOI: 10.1126/scitransImed.3001756

< Prev | Table of Contents | Next >

RESEARCH ARTICLE

HUMAN GENOMICS

Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing

Callum J. Bell^{1,*}, Darrell L. Dinwiddie^{1,2,*}, Neil A. Miller^{1,2}, Shannon L. Hateley¹, Elena E. Ganusova¹, Joann Mudge¹, Ray J. Langley¹, Lu Zhang³, Clarence C. Lee⁴, Faye D. Schilkey¹, Vrunda Sheth⁴, Jimmy E. Woodward¹, Heather E. Peckham⁴, Gary P. Schroth³, Ryan W. Kim¹ and Stephen F. Kingsmore^{1,2,†}

Exome sequencing for known genes:
 -- Sequence an exome
 -- Interpret a 'region of interest'


Sequencing to Diagnose Rare Disorders

Exome sequencing identifies the cause of a mendelian disorder

<u>Sarah B Ng</u>, Kati J Buckingham, Choli Lee, Abigail W Bigham, Holly K Tabor, Karin M Dent, Chad D Huff, Paul T Shannon, Ethylin Wang Jabs, Deborah A Nickerson, Jay Shendure & Michael J Bamshad

Affiliations | Contributions | Corresponding authors

Nature Genetics 42, 30–35 (2010) | doi:10.1038/ng.499 Received 02 October 2009 | Accepted 09 November 2009 | Published online 13 November 2009 | 22 November 2009

(a,b) A 9-year-old boy with Miller syndrome caused by mutations in DHODH. Facial anomalies (a) include cupped ears, coloborna of the lower eyelids, prominent nose, micrognathia and absence of the fifth digits of the feet (b). (c,d) A 26-year-old man with methotrexate embryopathy. Note the cupped ears, hypertelorism, sparse eyebrows and prominent nose (c) accompanied by absence of the fourth and fifth digits of the feet (d). c and d are reprinted with permission from ref. 30.

Genomic Sequencing in Patient Care

Ng, Shendure: Miller syndrome, 4 cases Exome sequenced reveals causal mutations in DHODH **Lifton:** Undiagnosed congenital chloride diarrhea (consanguinous) Exome seq reveals homozygous SLC23A chloride ion transporter mutation Return diagnosis of CLD (gi) not suspected Bartter syndrome (renal) Worthey, Dimmock: 4-year old, severe unusual IBD Exome seq reveals XIAP mutation (at a highly conserved aa) proimmune disregulation opt for bone marrow transplant over chemo Mardis, Wilson: acute myelocytic leukemia but not classical translocation Genome sequencing (1 week + analysis) reveals PML-RARA translocation Directs ATRA (all trans retinoic acid) treatment decision Choi (Nephrology); Lupski (Neuro); Worthey (GI);.... Baylor, Wisconsin, Partners, Ambry, GeneDx, others launched or announced

Adopted from Benjamin Neale (Analytic and Translational Genetics Unit, MGH)

Translating Discoveries to Patients

Genetic Testing

Diagnostic Testing: Determine whether an individual has a genetic disease. Current estimates suggest more than 4000 diseases are caused by single gene mutations.

Predictive Medicine: Determine whether an individual has an increased risk for a particular disease.

Pharmacogenomics: Classify subtle variations in an individual's genetic makeup to determine whether a drug is suitable for a particular patient, and if so, what would be the safest and most effective dose.

Opportunity to Use Molecular Tests Increasing

3000 2900		_
2800	□ Laboratories	
2700	Diseases for which testing is available	
2600 2500		
2400		
2300		_
2200		
2100		
2000		-
1900		-
1800		
1700 1600		
1500		
1400		_
1300		_
1200		-
1100		
1000		-
900		
800 700		
600		
500		
400		
300		
200		
100		
0	1002 1004 1005 1006 1007 1009 1000 2000 2001 2002 2003 2004 2005 2006 2007 2009 2000 2010 2014	012
	1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2	012

Data source: GeneTests database (2012)/www.genetests.org

There are >1200 genetic tests available to physicians to aid in the diagnosis and therapy for >1000 different diseases.

Genetic testing is performed for the following reasons:

- conformational diagnosis of a symptomatic individual
- pre-symptomatic testing for estimating risk developing disease
- pre-symptomatic testing for predicting disease
- prenatal diagnostic screening
- newborn screening
- pre-implantation genetic diagnosis
- carrier screening
- forensic testing
- paternal testing

Costs and Complexity of Tests Increasing

- Some Sanger tests are \$15,000
- Even single gene tests can be \$5,990
- A clinical exome can be \$7,500
- Clinical genome \$12,000
- Getting an answer may not be likely. In some cases rate of getting a successful answer is 25%

Context: Cost pressures in the health care system

An Opportunity to Build A Pediatric Network

Claritas Genomics – Who Are We?

- Clinical pediatric genetic diagnostic laboratory
- Best quality services, from pre-order to post-report
- Test for any condition
- Close partnership with clinical and genetic expertise from pediatric hospitals for test development and interpretation
- Single gene tests to gene panels to exomes
- Proprietary copy number variation with special emphasis on autism spectrum disorders
- Optimizing Life Technologies' Ion Proton platform

Building a Network Through Our Services

Claritas: an interface enabling our community to address the challenges and opportunities of clinical use of NGS:

- Complexity of measurement
- Complexity of interpretation
- Clinical utility
- Appropriate utilization
- Reimbursement
- Result reporting
- Support services and explanation
- Discovery

Right question Right test Right result

Claritas Management Team and Key Members

Patrice Milos, PhD Chief Executive Officer	- Senior executive with 18+ years experience in genomics and medicine - Pharma Experience, CSO/R&D at Helicos BioSciences		
-	JD >25 years experience in Clinical Laboratory Management and Operations - Recognized leader among Clinical Lab peers - Co-founder Claritas Genomics		
Nurjana Bachman, I Chief Business Officer	 PhD - Completed >100 transactions over 8 years as BD director Specialty in corporate collaborations Co-founder Claritas Genomics 		
Peter Park, PhD HMS, BCH Associate Professor Info	 Key consultant, medical informatics leader and visionary Co-founder Claritas Genomics Imatics Program 		
Timothy Yu, MD PhD Key consultant, medical informatics leader and visionary HMS, BCH - Co-founder Claritas Genomics Assistant Professor Neurology			
HMS, CBMI Ex.	 D - Medical and Information Systems Entrepreneur Founder of Correlagen Dx, CERNER, CareInsight ership - Co-founder Claritas Genomics 		

Claritas Board of Directors

Robert Higgins General Partner, Highland Capital Partners

David Margulies, MD Executive Director, Gene Partnership, BCH

Ronnie Andrews President, Medical Sciences Life Technologies

Patrice Milos, Ph.D. CEO, Claritas

Erik Halvorsen, PhD Executive Director, Technology & Innovation Development Office (BCH Observer)

Mark Gardner VP & GM Advanced Genomic Systems (Life Tech Observer)

CLARITAS GENOMICS

Claritas Genomics - Funding

- Arose out of Boston Children's Hospital (>10y)
- Investment from Life Technologies
- Investment from Large Computing Company
- Building Partnerships with Major Pediatric Hospitals in the US
- Working to Partner with Country Health Systems

What Does The Pediatric Community Want?

Patients	Fast, reliable answer
Clinicians	Support, streamlined process
Hospitals	One stop shopping, best value, integrated reporting
Payers	Utility, value
Researchers and health systems	Large numbers of well- characterized samples, scalability to enable discovery

What Do Pediatric Hospitals Want?

Pediatric Hospitals Cost-effective measurements (sequencing or otherwise)

Reliable interpretation

Partners who could enable us and our peers to build knowledge and advance medical genomics for patients

SERVICES

Meeting Partners' Needs

Partner	Need	Claritas Service
Patients	Fast, reliable answer	Genetic testing with consistent interpretation
Clinicians	Support, streamlined process	Pairing test with clinical need, easy ordering and billing
Hospitals	One stop shopping, best value, integrated reporting	Advice navigating testing landscape and consolidating send-out
Payers	Utility, value	Right test, strong clinical justification
Researchers and health systems	Large numbers of well- characterized samples, scalability to enable discovery	Research, data network

SERVICES Meeting Partners' Needs

Partner	Need	Claritas Service
Patients	Fast, reliable answer	Genetic testing with consistent interpretation
Clinicians	Support, streamlined process	Pairing test with clinical need, easy ordering and billing
Hospitals	One stop shopping, best value, integrated reporting	Advice navigating testing landscape and consolidating send-out
Payers	Utility, value	Right test, strong clinical justification
and health	Large numbers of well- characterized samples, scalability to enable discovery	Research, data network

TESTING SERVICES Fast, Reliable Answers

- Test menu over 110 tests currently offered
 - Single gene Now
 - NGS Panel for DMD Available Now
 - Proprietary CNV Array Optimized for Autism
 - NGS exome-based tests Fall 2013
 - Genomes 2014
- Assays arising from the clinic, developed for clinicians
- CLIA facility, using all technology platforms
- Goals:

Affordability, efficiency, analytic automation, scalability

Interpretation – Providing Clinical Context

Bioinformatics:

- Experts from Boston Children's, Harvard, Life Technologies
- Ensures consistent, scalable interpretation

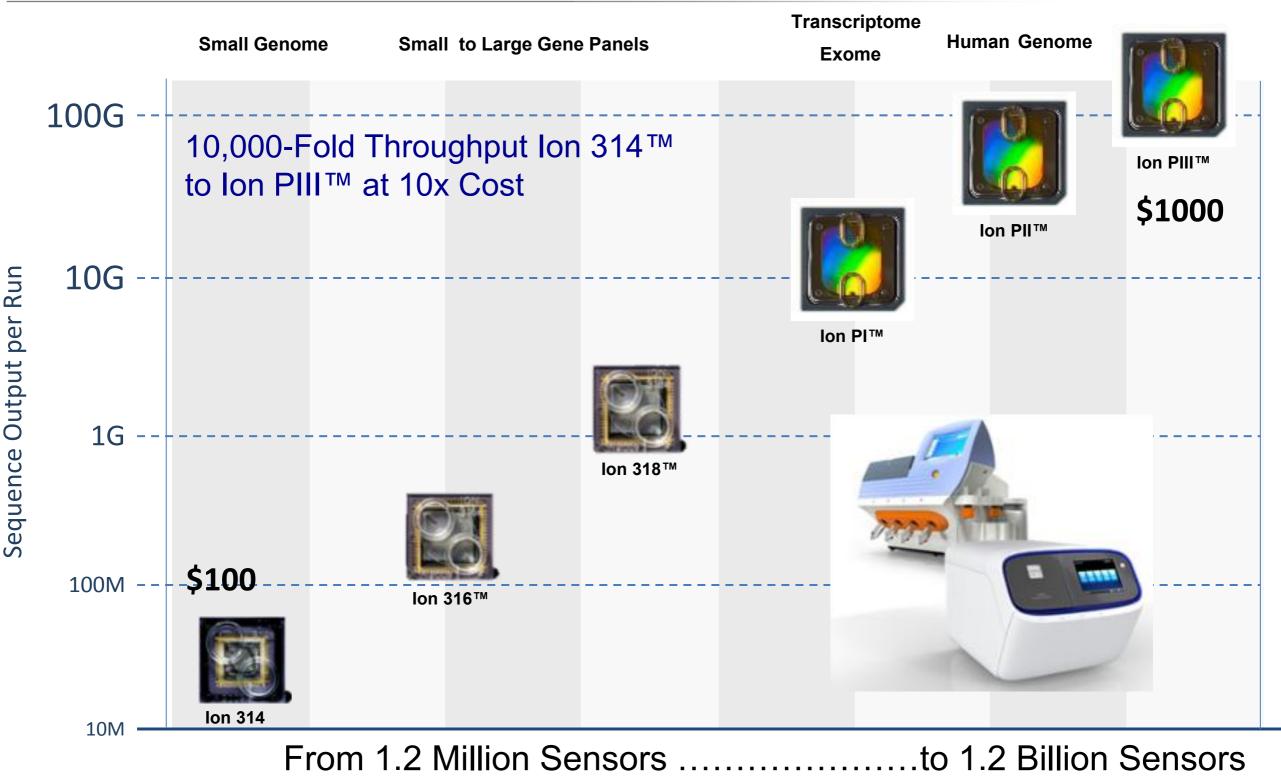
Clinical practitioners:

 Expert genetic counselors, medical directors

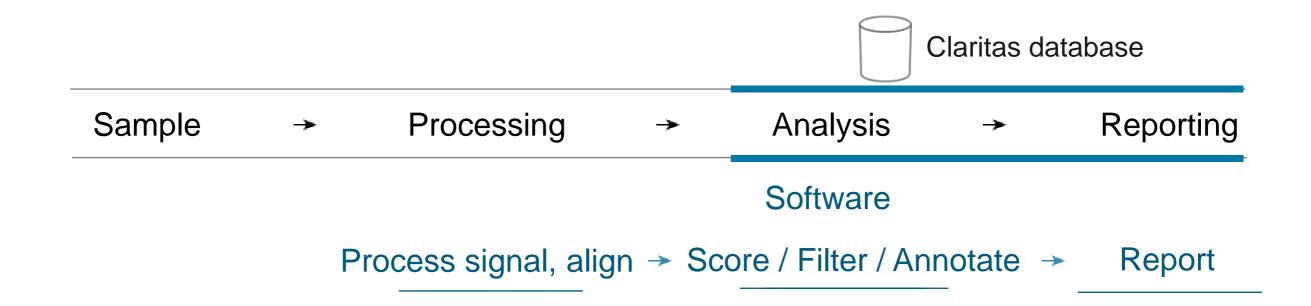
CLARITAS GENOMICS	9 Hope Avenue Waltham, MA 02453 Phone: (781) 216 – 2850 Fax: (781) 216 – 2857
	www.childrenshospital.org/dnalab
Patient Name:	Provider Name:
Patient DOB:	Provider Location:
aboratory ID/Accession#:	
Date Received:	Date Reported:
Fest Ordered: Exome Sequence Analysis	
Preferences Indicated: Incidental Findings	Pharmacogenetic Variants Carrier Status
Specimen Type: Blood	
ndication: Diagnostic	

Boston

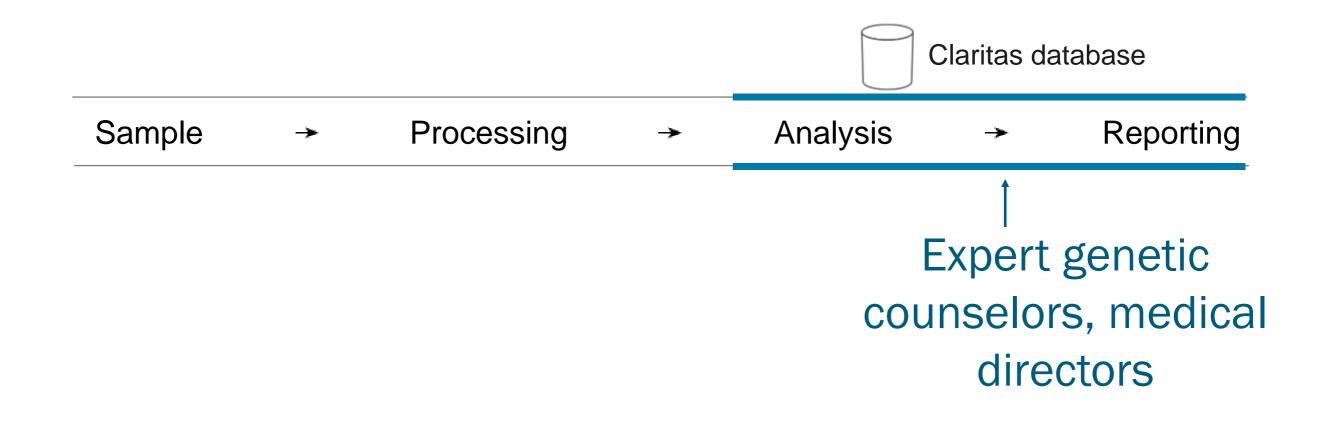
Exome and genome testing, simplified


Sample	→	Processing	→	Analysis	→	Reporting
--------	----------	------------	----------	----------	----------	-----------

TESTING SERVICES Claritas Diagnostic Testing


Exome and genome testing

Sample	→	Processing	→	Analysis	→	Reporting	
Can come from anywhere		All platforms, optimizing to Life Technologies	\$500 Exome and \$1,000 Genome Sequencing in as little as 2 hours on the Benchtop				
				In Proton™ I Chip 2 human exomes Up to 10 Gb 165 million wells Up to 200bp reads 2-4 hour runs \$1,000 per run	Ion Proton™ II C 1 human genome Up to 20X 660 million wells Up to 200bp reads 2-4 hour runs \$1,000 per run	chip	
			4		may relate to products that have not is subject to change without notice.	ion torrent	


TESTING SERVICES Optimizing to Life's Ion Proton Platform

TESTING SERVICES Claritas Diagnostic Testing

TESTING SERVICES Claritas Diagnostic Testing

CUSTOMER SERVICE

Support And A Streamlined Process

Support:

- Help navigating the test menu when doctors have patients with complex presentation and family history
- Long term relationship support post report
- Re-interpretation services with incorporation of new knowledge

Streamlined:

• Ability to order and integrate into hospital systems (EMR, billing, etc.)

CUSTOMER SERVICE Navigating the Menu


Test selection is tied to clinical presentation:

- Takes away some of the guess work
- Upfront consultation to ensure that correct test
 is ordered
- Support justifying prior authorization

Example – test selection transitioning...

...from this:

- 1p36 deletion syndrome
- 1q21.1 deletion/duplication
- 15q13.2-q13.3 deletion
- 16p11.2 deletion/duplication
- 17q12 deletion
- 17q21 microdeletion syndrome
- Achondroplasia
- Acute megakaryoblastic leukemia
- Alagille syndrome
- Angelman syndrome
- etc...

<u>Check all that apply:</u>
✓ Failure to thrive
✓ Muscle weakness
✓ etc...

SERVICES

Meeting Partners' Needs

Partner	Need	Claritas Service
Patients	Fast, reliable answer	Genetic testing with consistent interpretation
Clinicians	Support, streamlined process	Pairing test with clinical need, easy ordering and billing
Hospitals	One stop shopping, best value, integrated reporting	Advice navigating testing landscape and consolidating send-out
Payers	Utility, value	Right test, strong clinical justification
Researchers and health systems	Large numbers of well- characterized samples, scalability to enable discovery	Research, data network

One-Stop Shop, Best Value, Integration

- Hospital labs send millions of dollars to labs each year to run tests
- Individual institutions do not have the leverage to negotiate best prices
- Utilization guidelines based on evidence and best practices from the community
- Working with some of the largest providers of both testing services and integration processes to make a seamless experience

We can consolidate molecular send-outs through a streamlined system

SERVICES

Meeting Partners' Needs

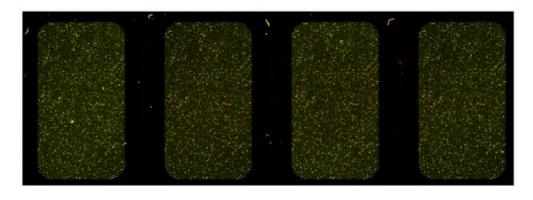
Partner	Need	Claritas Service
Patients	Fast, reliable answer	Genetic testing with consistent interpretation
Clinicians	Support, streamlined process	Pairing test with clinical need, easy ordering and billing
Hospitals	One stop shopping, best value, integrated reporting	Advice navigating testing landscape and consolidating send-out
Payers	Utility, value	Right test, strong clinical justification
Researchers and health systems		Research, data network

RELATIONSHIP WITH PAYERS

Strong Justification of Value

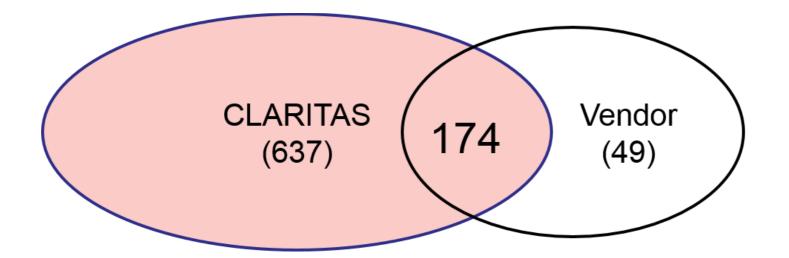
- Test menu arises from clinical needs
- Emphasis on ordering the right test for the symptoms
- Increasing chance of meaningful result
- Less wasteful testing
- Utilization analysis informative for ultimate cost-savings

Examples: Claritas Products Array Based Measurements


Copy Number Variations in Autism Spectrum Disorder

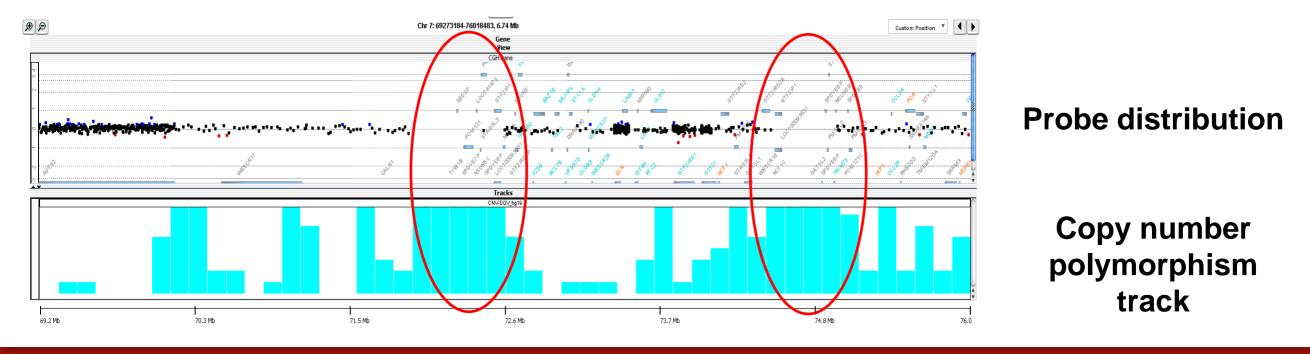
- >10,000 pediatric patients examined
- Majority of patients were phenotypically characterized as having developmental delays including autism
- Allowed customization of the ClaritasGenomicsChip to maximize detection of copy number events
- Data comparison to demonstrate distinct differences to other market products
- World-class physicians helping to inform interpretation of the data

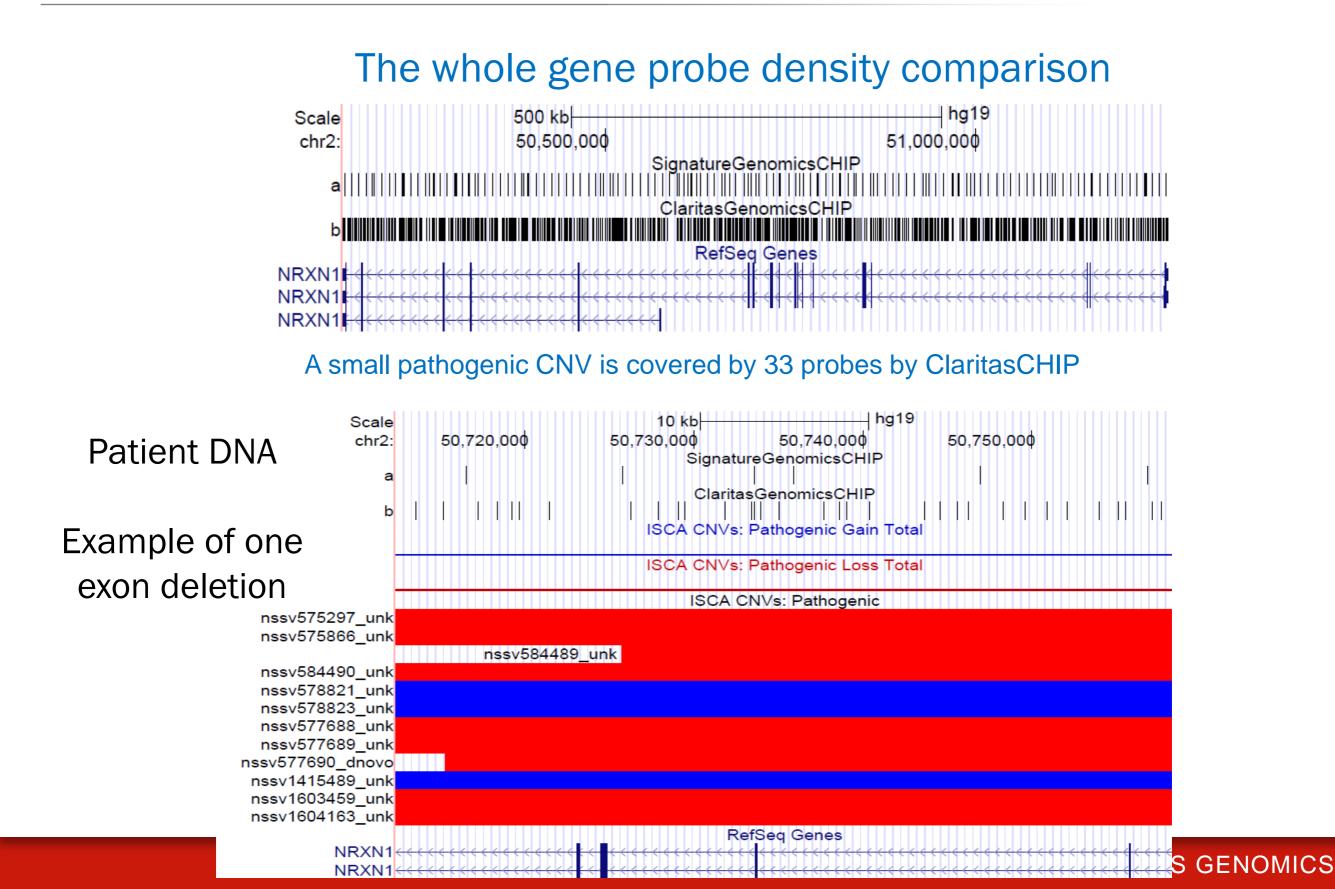
Unique Features of Claritas


CHIPs use Agilent 4X180K CNV+SNP array platform. CHIPs cover the whole human genome

Probe numbers

CHIP	CNV probe #	SNP probe #	AOH sensitivity
Claritas	150K	30K	5-10Mb
Vendor	120K	60K	7-10Mb*


*>10Mb is recommended clinical reporting cutoff for AOH Claritas product provides SNP depth to allow such reporting across the genome All known genomic imbalance disorders are covered on the chips, as well as important chromosome landmarks: telomeres and centromeres Much more clinically relevant genes have enhanced probe coverage on ClaritasCHIP(811 vs. 228, 174 genes overlap) to ensure CNV detection


Unique Design Features

ClaritasGenomicsCHIP

- 30K SNP probes are sufficient to detect any AOH >7Mb. 30K more probes are allocated for copy number variant detection. Based on Claritas prior experience with previous 244 CNV array.
- 2. Enhanced probe coverage for genes known to be associated with developmental delay, intellectual disability and autism spectrum disorders, as well as for genes of haploinsufficiency.
- 3. Fewer probes are placed in clinically irrelevant copy number polymorphic regions (as shown in the image below).

The NRXN1 locus: Depth of Coverage

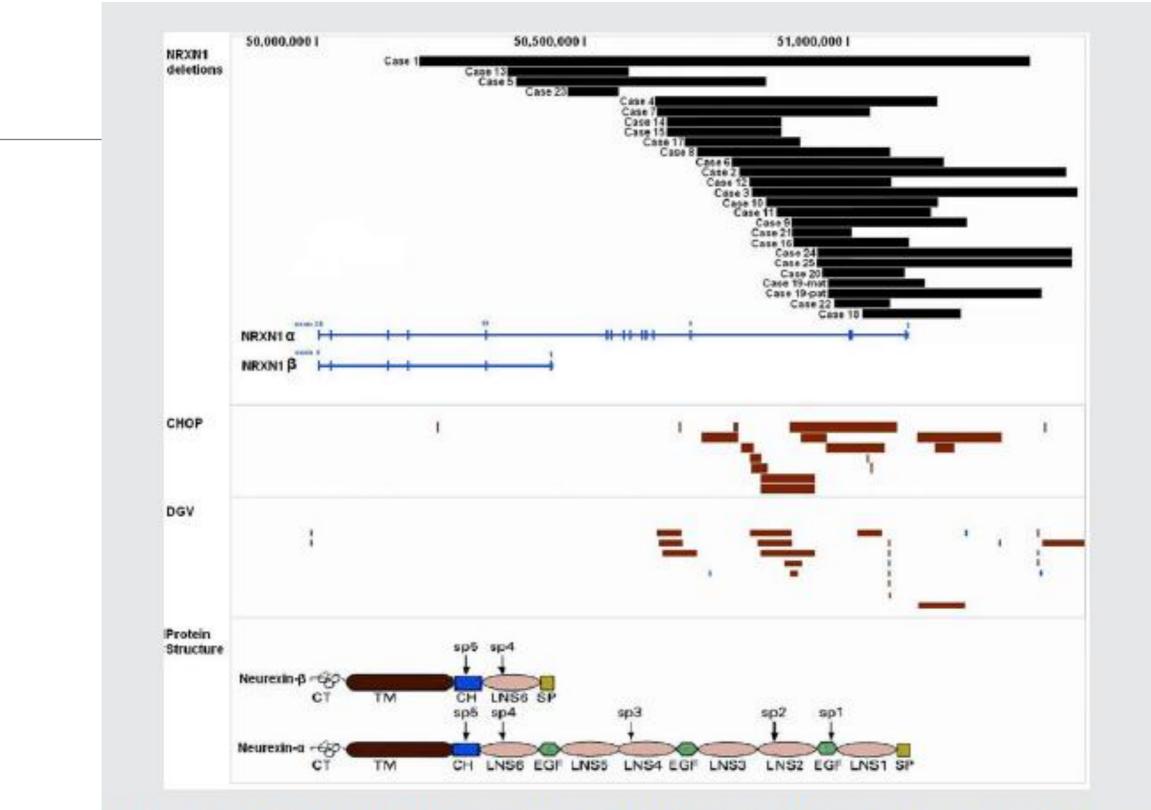
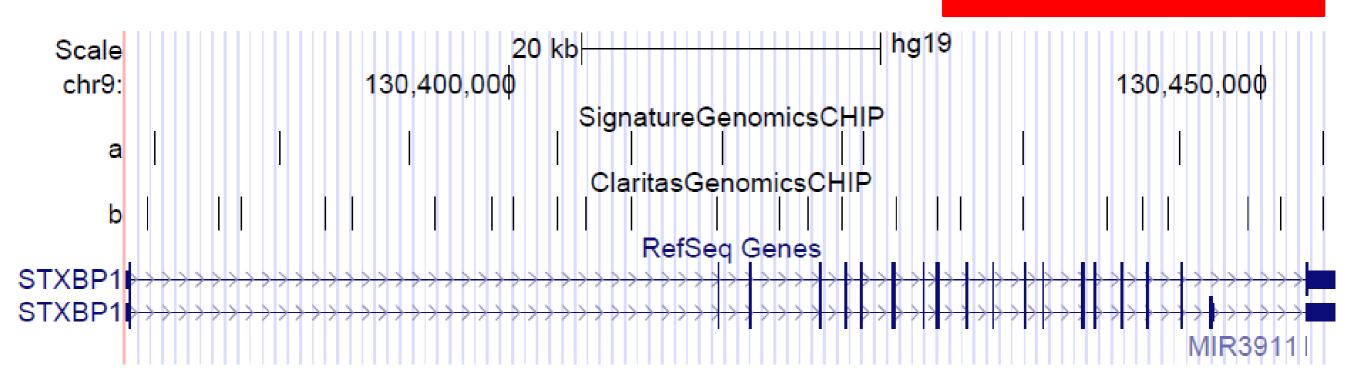
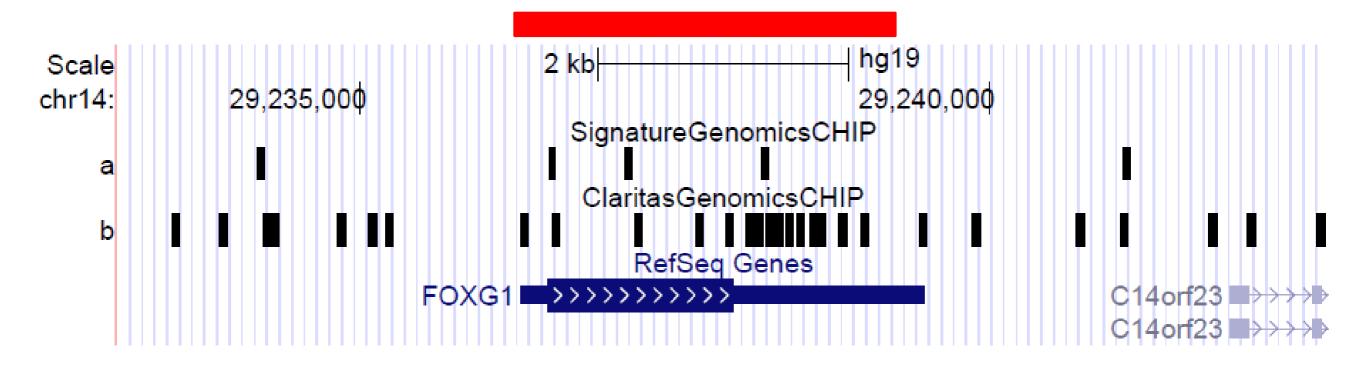



FIG. 1. NRXN1 exonic deletions identified in 25 individuals (cases 1–25). Upper panel: Black bars indicate the deleted region in each case, with cases ordered according to the start genomic position. Two bars are shown for case 19 with two unique heterozygous deletions inherited from each parent (note, the overlap between these two bars marks the homozygously deleted region in the proband). All breakpoints appear to be unique; there was no evidence of clustering at low copy repeats at the resolution of the microarray analyses. The NRXN1 coding region is shown in blue; exons are depicted by vertical lines. Middle panels: CNV data from the Childrens Hospital of Philadelphia (CHOP; deletions are shown in red) and Database of Genomic Variants (DGV; deletions are shown in red and duplications in blue). Lower panel: schemes of the protein structure of the α -Neurexin and β -Neurexin isoforms (CH, carbohydrate binding region; CT cytoplasmic tail; EGF epidermal growth factor-like domains; LNS 1–6 laminin, neurexin, sex hormone binding domains 1–6; SP signal peptide; TM, transmembrane region).

The STXBP1 locus: Depth of Coverage


Requirement for 5 contiguous probes to provide high level of confidence in CNV detection

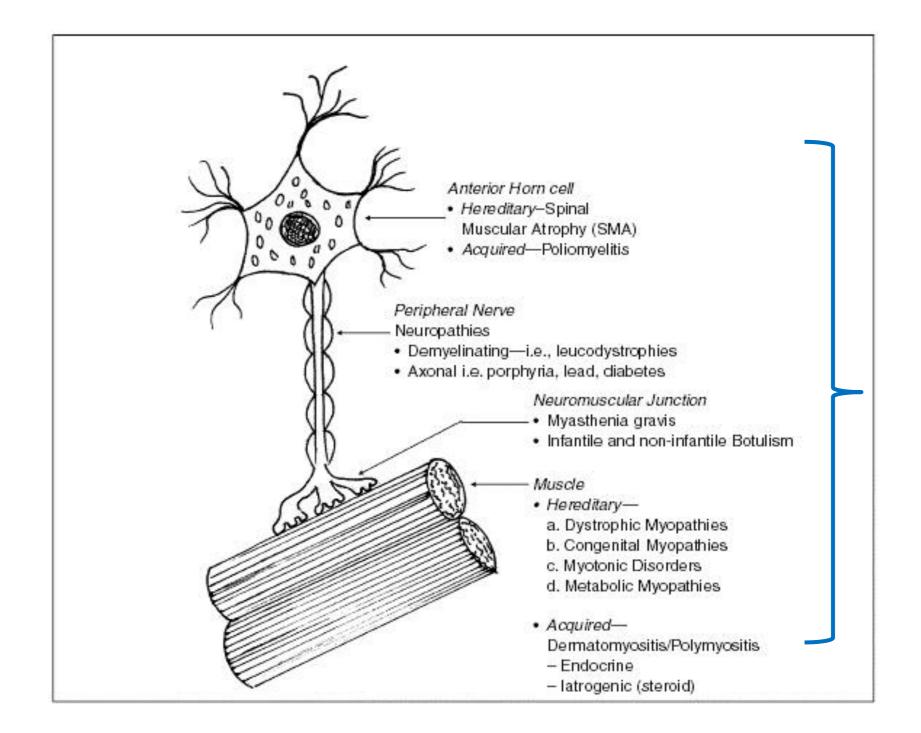
CHIP	Total probe #	Interval (kb)	Probe density	Detection sensitivity (kb)
Claritas	25	80	0.3	16
Vendor	11	80	0.14	36

Any exonic deletions less than 36kb in size (as the red bar) will be captured by Claritas Array

The FOXG1 locus: Density and Spacing

CHIP	Total probe #	Interval (kb)	Probe density	Detection sensitivity (kb)
Claritas	16	3.2	5	1
Vendor	3	3.2	0.94	5.3

A whole FOXG1 gene deletion (red bar) will be captured by Claritas Array


Examples: Claritas Products Next-Generation Sequencing Panel

Sequencing Genes for Neuromuscular Disorders

Background on Neuromuscular Disorders Panel

- Group of disorders involving muscles and/or their direct nerve system control.
- Neuromuscular disorders occur in ~1.5M Americans annually at any age
- Some 40 percent of them are under age 18
- All neuromuscular diseases are progressive in nature, and all result in muscle weakness and fatigue, many of which dramatically alter the quality of life for both patients and their families
- An active area in rare disease therapeutics

NMD Genetic Disorders

http://www.ncbi.nlm.nih.gov/books/NBK27251/figure/A13449/?report=objectonly

Clinical Indications – Phenotype Driven NMD panel testing in Children

Common presenting symptoms may include:

- Infantile floppiness or hypotonia
- Delay in walking, abnormal gait, frequent falling, difficulty climbing steps, inability to hop (delayed motor milestones)
- Feeding and respiratory difficulties
- Abnormal gait characteristics (Waddling gait, lordotic posture, difficulty rising from floor (Gowers' sign))
- Muscle cramps or stiffness, prominence of calves
- Elevated creatinine kinase (CK) level

10 NMD Gene Panel Using Next-Generation Sequencing Developed by physicians and subject matter experts at BCH

BMC Genetics

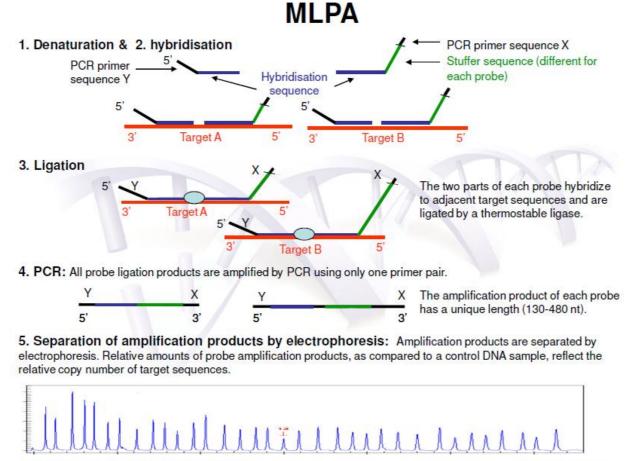
Methodology article

Open Access

Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes Richard R Bennett^{*1}, Hal E Schneider¹, Elicia Estrella¹, Stephanie Burgess¹, Andrew S Cheng², Caitlin Barrett¹, Va Lip², Poh San Lai³, Yiping Shen², Bai-

Lin Wu², Basil T Darras⁴, Alan H Beggs^{1,5} and Louis M Kunkel^{1,6,7}

Address: ¹Program in Genomics and Division of Genetics, and The Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, Massachusetts, USA, ²Department of Laboratory Medicine, Children's Hospital Boston, Boston, Massachusetts, USA, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA, ³Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, ⁴Department of Neurology, Children's Hospital Boston, Boston, Massachusetts, USA, ⁵Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA, ⁶Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA and ⁷Howard Hughes Medical Institute, Children's Hospital Boston, Boston, Massachusetts, USA, and Harvard Medical School, Boston, Massachusetts, USA

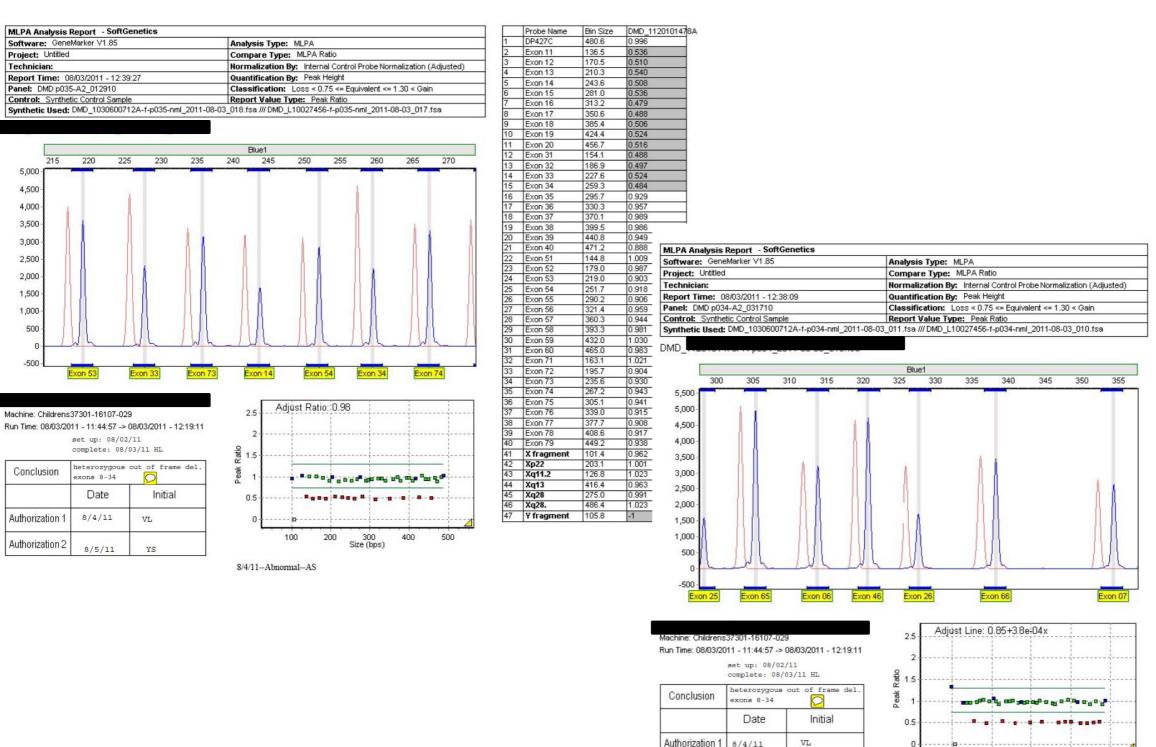

Email: Richard R Bennett* - bennett@enders.tch.harvard.edu; Hal E Schneider - hschneider@enders.tch.harvard.edu; Elicia Estrella - elicia.estrella@childrens.harvard.edu; Stephanie Burgess - sburgess@enders.tch.harvard.edu; Andrew S Cheng - Andrew.Cheng@childrens.harvard.edu; Caitlin Barrett - barrett.caitlin@gmail.com; Va Lip - va.lip@childrens.harvard.edu; Poh San Lai - paelaips@nus.edu.sg; Yiping Shen - Yiping.Shen@childrens.harvard.edu; Bai-Lin Wu - Bai-Lin.Wu@childrens.harvard.edu; Basil T Darras - basil.darras@childrens.harvard.edu; Alan H Beggs - beggs@enders.tch.harvard.edu; Louis M Kunkel - kunkel@enders.tch.harvard.edu

* Corresponding author

Published: 18 October 2009 BMC Genetics 2009, 10:66 doi:10.1186/1471-2156-10-66 Received: 15 April 2009 Accepted: 18 October 2009

MLPA: Exonic Deletion/Duplication

Approximately 60% of DMD and BMD cases are caused by large deletions (one exon or greater) or large duplications in the DMD gene



Schouten, J.P. et al. Nucl. Acid Res. 30, e57.

MLPA is used initially to assess exonic CNV

MRC-Holland

DMD exon 8-34 heterozygous deletion detected

Authorization 2

/5/11

4	IEX01101	130.1	10.330
3	Exon 02	169.0	1.007
4	Exon 03	210.1	0.997
5	Exon 04	244.1	0.997
6	Exon 05	282.2	0.958
7	Exon 06	313.8	0.958
8	Exon 07	354.1	0.946
9	Exon 08	385.2	0.528
10	Exon 09	424.5	0.499
11	Exon 10	457.1	0.510
12	Exon 21	153.8	0.539
13	Exon 22	185.6	0.499
14	Exon 23	225.3	0.538
15	Exon 24	259.3	0.488
16	Exon 25	298.2	0.512
17	Exon 26	327.8	0.530
18	Exon 27	369.9	0.509
19	Exon 28	401.2	0.522
20	Exon 29	441.0	0.492
21	Exon 30	473.1	0.523
22	Exon 41	144.2	0.959
23	Exon 42	178.4	1.030
24	Exon 43	217.5	0.931
25	Exon 44	251.6	1.006
26	Exon 45	289.9	0.985
27	Exon 46	320.8	1.019
28	Exon 47	360.4	0.928
29	Exon 48	393.6	1.023
30	Exon 49	432.8	0.980
31	Exon 50	463.3	1.002
32	Exon 61	161.6	0.979
33	Exon 62	193.5	1.003
34	Exon 63	236.0	0.990
35	Exon 64	266.5	0.959
36	Exon 65	305.2	0.973
37	Exon 66	338.1	0.973
38	Exon 67	377.3	0.998
39	Exon 68	408.1	1.006
40	Exon 69	448.7	0.937
41	X fragment	97.8	1.329
42	Xp22	203.2	1.068
43	Xq11.2	126.9	0.965
44	Xq13	416.5	0.985
45	Xq28	486.5	1.009
46	Xq28.	275.0	0.973
47	Y fragment	105.9	-1

Bin Size DMD_1120101478

0.932

0.958

480.2

136.1

Probe Name

Exom 70

Exon 01

2

8/4/11--Abnormal--AS

100

200

300 Size (bps) 400

500

Panel: DMD and Limb-girdle Dystrophy Genes

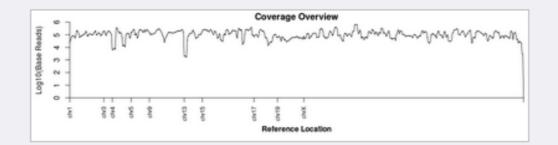
Gene	Locus	Coordinate (hg19)	Amino Acid
		4265169842704515	734
CAPN3	15q15.1-q21.1		
		87754868788451	151
CAV3	3p25		
DMD	Xp21.2	3113734533357726	3685
FKRP	19q13.32	4724930347261832	495
		156084461156109878	572
LMNA	1q21.2-q21.3		
SGCA	17q21	4824336648253293	178
SGCB	4q12	5288686152904485	318
SGCD	5q33-q34	155753767156194799	290
SGCG	13q12	2375506023899304	291
TRIM32	9q33.1	119449581119463579	653

Covers 110kb Gene Sequence

Amplicon Generation: A Robust Automation Process

- Regions of interest Coding exons Regulatory and intronic regions with reported pathogenic mutations
- Primers
- Thermocycle programs Uniqueness Robustness

- Genomic DNA QC
 - Amplicon QC Completeness Evenness cleanness



235 amplicons in three 96-wells plates at one condition (TD-PCR) on Hamilton

Coverage Performance

Coverage Analysis Report

R_2013_07_09_18_08_48_user_WG1-170_Auto_user_WG1-170_442

Number of mapped reads	719,063
Percent reads on target	87.51%
Average base coverage depth	2,938
Uniformity of base coverage	93.91%

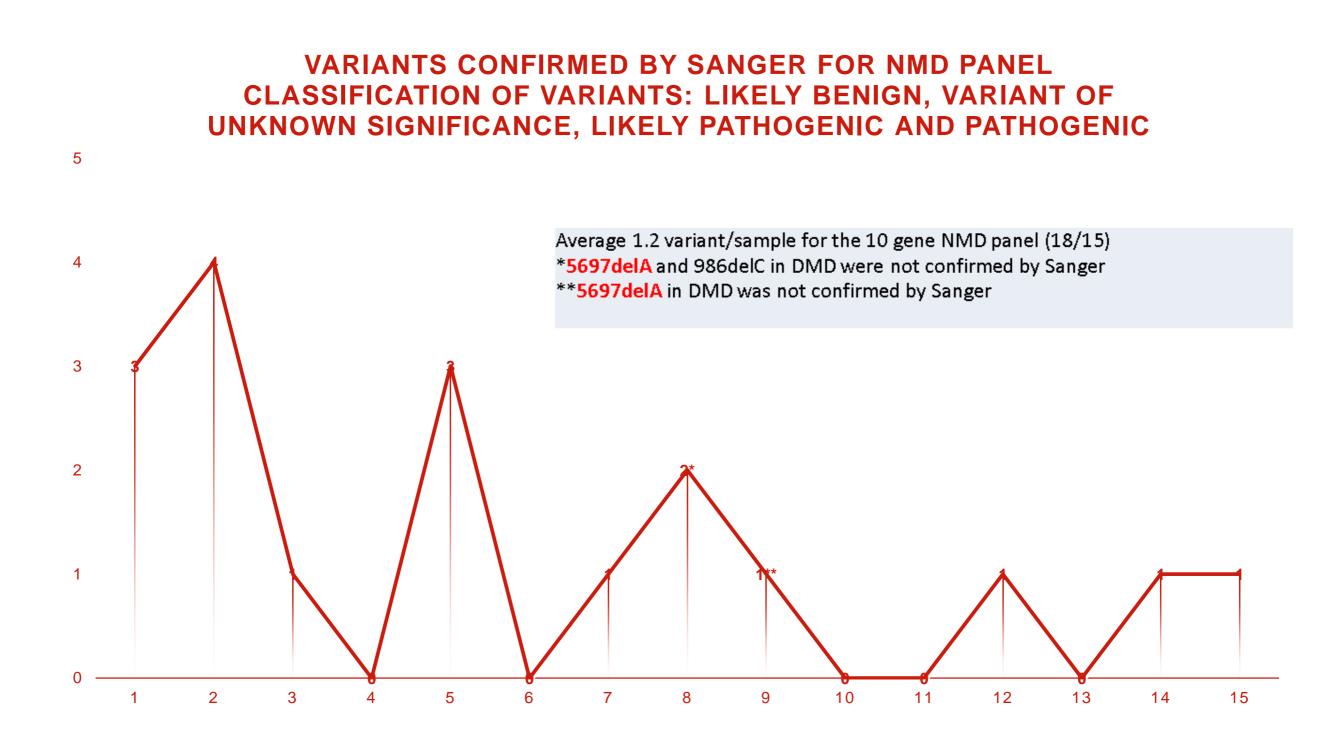
Amplicon Read Coverag	le	Target Base Coverage					
Number of amplicons	147	Bases in target regions	25,812				
Percent assigned amplicon reads	44.87%	Percent base reads on target	48.93%				
Average reads per amplicon	2,195	Average base coverage depth	2,938				
Uniformity of amplicon coverage	93.20%	Uniformity of base coverage	93.91%				
Amplicons with at least 1 read	99.32%	Target base coverage at 1x	99.81%				
Amplicons with at least 20 reads	99.32%	Target base coverage at 20x	99.81%				
Amplicons with at least 100 reads	97.96%	Target base coverage at 100x	98.66%				
Amplicons with at least 500 reads	93.20%	Target base coverage at 500x	95.15%				
Amplicons with no strand bias	97.96%	Target bases with no strand bias	95.79%				
Amplicons reading end-to-end	14.97%	Ŭ					

Number of Runs/Samples to Validate Sensitivity: Control and Mutation Positive Samples - 11 runs Multiple Runs – Same Samples Multiple Samples – Confirm Variants and Mutations

Mutation Confirmation: Total of 41 mutations

Mutation Missed: None*

*Note: SampleA8_run75 and Sample5_run86, the Sanger result was heterozygous c.2168+13T>C (rs228373) but the NGS result supported "homozygous". Re-sequencing via Sanger confirmed that it was a homozygous.


Repeat rate: minimal

Detection of FKRP Homozygous Mutation c.826C>A/p.276L>I

	19:47	7,259,515	2 5 4 0 9	392,925		19:47	7,259,52	20	9,892,93	20	19:4	7,259,52	5	9,892,93	1	19:47	7,259,530	254	FKRP 9,892,940	19:4	7,259,53	5	9,892,945	19:4	7,259,54	0	,892,950		19:47,259,		549,892,9	55	19:47	,259,550	2,549,8
C C	C C	G G 270 R R	2,549,6 C C	G G G	C C A	G G	C C	Z,54 T T L	G G G	G G	G G G	C C	2,54 A A	9,692,93: T T	° C	C C	G G 275 R R	2,54 C C	C T A T	A A	G G	2,548 T T V V	G A G A G A	G G S S	C C	2,545 T T	,092,950 G G W W	G G	G A G A 28 E	A	G	G G G G	C C	G G	2,549,6 G G G
0000 000	0000000	000000	0000000		A 0000000		0000000		0000000		000 000	0000000	A A A A A A A	TTTT	0000000	0000000	000000	0000000		A A A A A A A			G A G A G A G A G A G A G A G A	30000000	0000000	T T T T T	0000000		G A G A G A G A G A G A G A	A A A A A A A		0 0 0 0 0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , ,	0000000	0000000
0000000000			0000000000	10000000000			00000000000						A A A A A A A A A A A A A A						A T A T A T A T A T A T A T	A A A A A A A A A	1 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	G A G A G A G A G A G A G A G A G A G A						G A G A G A G A G A G A G A G A G A	A A A A A A A A A A A		0 0 0 0 0 0 0		រ ព ព ព ព ព ព ព ព	<u>រ ព ព ព ព ព ព ព ព ព ព ព</u>
000000000		00000000000000000000000000000000000000						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000		 <td>0000000</td><td>A A A A A A A A A A A</td><td></td><td></td><td></td><td>00000000</td><td></td><td>A T A T A T A T A T A T A T</td><td>A A A A A A A</td><td>000000000</td><td>1 1 1 1 1 1 1 1 1 1</td><td>G A G A G A G A G A G A G A</td><td>00000000</td><td></td><td></td><td></td><td></td><td>G A G A G A G A G A G A G A G A</td><td>A A A A A A A A A A</td><td></td><td>0000</td><td></td><td></td><td></td>	0000000	A A A A A A A A A A A				00000000		A T A T A T A T A T A T A T	A A A A A A A	000000000	1 1 1 1 1 1 1 1 1 1	G A G A G A G A G A G A G A	00000000					G A G A G A G A G A G A G A G A	A A A A A A A A A A		0000			
000000000		0 0 0 0 0 0 0 0 0 0				a o o o o o o o o o o o		1 1 1 1 1 1 1 1 1 1					A A A A A A A A A A A						A T A T A T A T A T A T A T A T	A A A A A A A A			G A G A G A G A G A G A G A G A G A	a a a a a a a a a				000000000	G A G A G A G A G A G A G A G A	A A A A A A A	000000000000000000000000000000000000000	0000	00000000	a a a a a a a a a	000000000
000000	0000	6 6 6 6 6 6 6	000000	000000	000000	00000	000000	T T T T T	00000	00000	00000	000000	A A A A A	T T T T	000000	000000	00000		A T A T A T T A T	A A A A A	000000	T T T T	G A G A G A G A G A	00000	00 000	T >T T T	000000	00000	G A G A G A G A G A G A	A A A A A	C G G G G G G	00000	000000	00000	0000000
000000	000000	99999	000000	999999	000000	000000	000000	T T T T T	000000	000000	000000	000000	A A A A A	T T T T T	000000	000000	9 9 9 9 9 9 9 9 9 9 9		A T A T A T A T A T A T	A A A A A	999999	T T T T T	G A G A G A G A G A G A	000000	000000	T T T T T	999999	0 0 0 0 0 0 0 0 0 0	G A G A G A G A G A G A	A A A A A	9 9 9 9 9 9 9 9 9 9	00000	000000	00000	0 0 0 0 0 0 0 0 0 0
υυυυυυ	000000	0 0 0 0 0	000000	000000	000000	000000	000000	T T T T T	000000	000000	000000	000000	А А А А А	T T T T T T	υυυυυυ	000000	000000	00000	A T A T A T A T A T A T	А А А А А	999999	T T T T T T	G A G A G A G A G A G A	00000	000000	T T T T T T	000000	000000	G A G A G A G A G A G A G A	A A A A	6 6 6 6 6 6 6 6	GGGGG	000000	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
00000	00000	000000	00000	6 6 6 6 6 6 6 6 6	00 000	0000 00000	υυυυυ	T T T T T	00000	000000	000000	00000	A A A A A	T T T T	00000	00000	000000	000000	A T A T A T A T A T A T	А А А А А А	000000	T T T T T	G A G A G G A G G A G A G A	000000	00000	T T T T	000000	000000	G A G A G A G A G A	A A A A A	0 0 0 0 0 0 0 0 0 0 0	G G G	00000	000000	0 0 0 0 0 0 0 0 0

The variant is reported in dbSNP but pathogenic in homozygous condition

Sanger Confirmation of Variants

Clinical Interpretation and Reporting

- Check clinical significance of identified SNP in the ROI
- Curate and query Claritas mutation database
- Informatics analysis of novel variants
- Categorization and scoring of variants
- Reporting template generation
- Client Services issues report

Summary of the First Eleven Clinical Samples NMD Next-gen Panel

One patient: Multi-exon deletion in DMD (should be picked up by MLPA- recommend MLPA test first)

Three patients with Pathogenic or Likely Pathogenic variants: FKRP, DMD and CAPN3 genes

Two patients: Variants of unknown significance

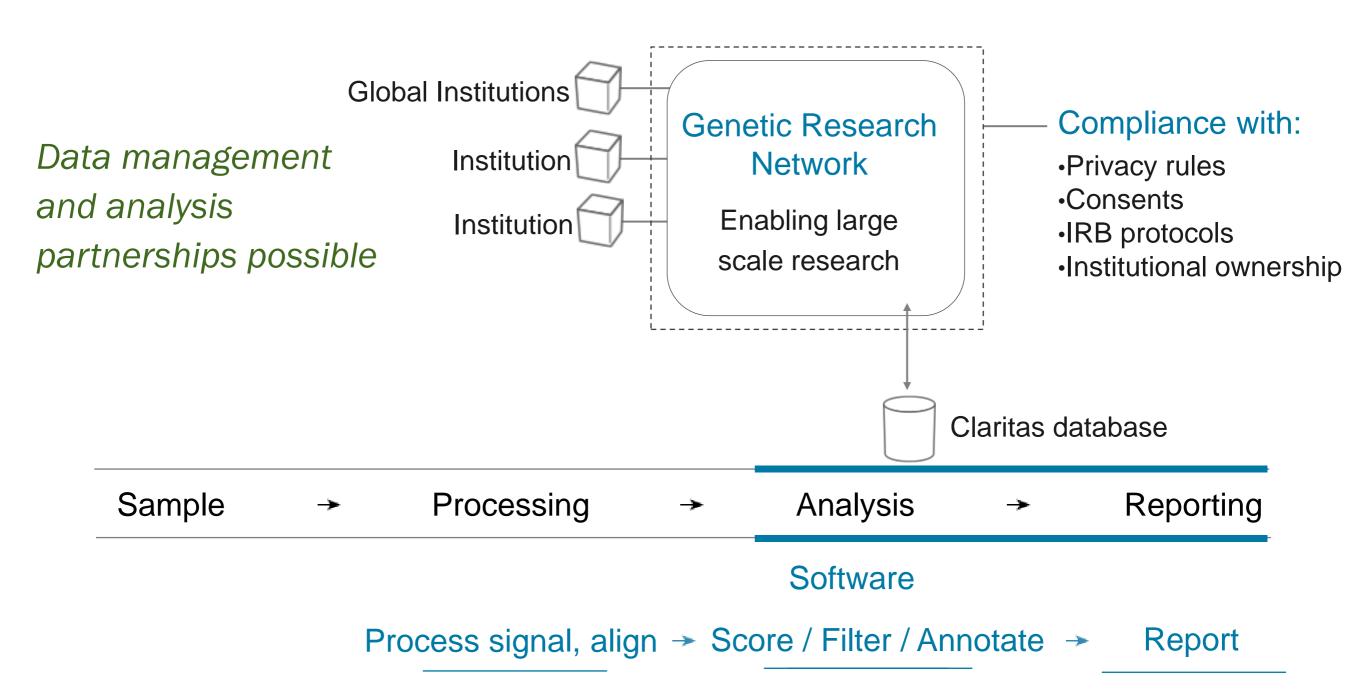
Five patients: No variant result (no variant reported)

SERVICES

Meeting Partners' Needs

Partner	Need	Claritas Service
Patients	Fast, reliable answer	Genetic testing with consistent interpretation
Clinicians	Support, streamlined process	Pairing test with clinical need, easy ordering and billing
Hospitals	One stop shopping, best value, integrated reporting	Advice navigating testing landscape and consolidating send-out
Payers	Utility, value	Right test, strong clinical justification
Researchers and health systems	Large numbers of well- characterized samples, scalability to enable discovery	Research, data network

For Researchers: Data Network

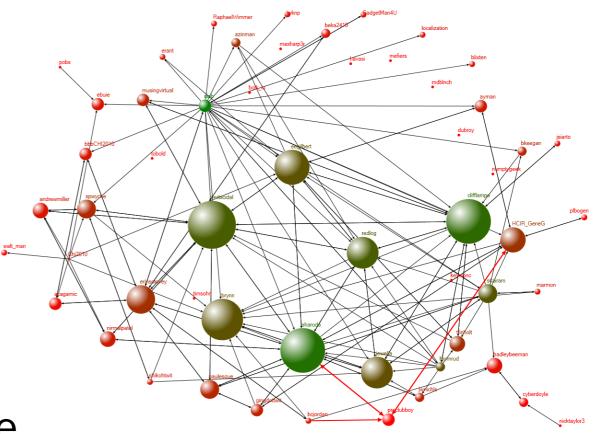

- High quality data in
- Scale, automation via bioinformatics
- Ability to query by a variety of aspects
- Leverage
- Enable discovery in genetic diseases in a new way – with the goal of helping patients

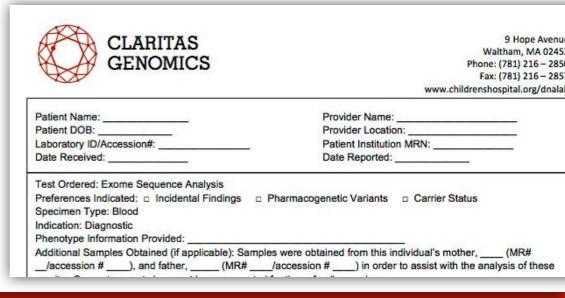
Large Health Systems and Pharma/Biotech can also benefit from this infrastructure

For Researchers: Data Network

- Compliant with: HIPAA, consent, IRB
- Sharing of information while protecting publication rights
- Contributors own their data
- Structured data input, well characterized samples
- Good representation of samples with rare conditions in the dataset
- Systems/software to query
- Great for population and clinical studies

Claritas Data Network




Claritas: Enabling a Clinical and Research Network

- Break down barriers between organizations
- Work together to address the challenges in pediatric genetic diagnostics
- Consolidate and lower costs while maintaining access to best services

Network facilitates scalability and sustainability.

Ultimately good for patients.

CLARITAS GENOMICS

Partner	Need	Claritas Service
Patients	Fast, reliable answer	Genetic testing with consistent interpretation
Clinicians	Support, streamlined process	Pairing test with clinical need, easy ordering and billing
Hospitals	One stop shopping, best value, integrated reporting	Advice navigating testing landscape and consolidating send-out
Payers	Utility, value	Right test, strong clinical justification
Researchers and health systems	Large numbers of well- characterized samples, scalability to enable discovery	Research, data network

Building a Network Through Our Services

Claritas: an interface enabling our partners to address the challenges and opportunities of clinical use of Next Generation Sequencing

- Complexity of measurement
- Complexity of interpretation
- Clinical utility
- Appropriate utilization
- Reimbursement
- Result reporting
- Support services and explanation
- Discovery

Right question Right test Right result

CLARITAS GENOMICS

Using genomics to enhance pediatric health

BioConference Live Presentation

CLARITAS GENOMICS